# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import numpy as np import paddle from paddle import fluid class TestMathOpPatchesVarBase(unittest.TestCase): def setUp(self): self.shape = [10, 1024] self.dtype = np.float32 def test_add(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a + b np.testing.assert_array_equal(res.numpy(), a_np + b_np) def test_sub(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a - b np.testing.assert_array_equal(res.numpy(), a_np - b_np) def test_mul(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a * b np.testing.assert_array_equal(res.numpy(), a_np * b_np) def test_div(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a / b # NOTE: Not sure why array_equal fails on windows, allclose is acceptable np.testing.assert_allclose(res.numpy(), a_np / b_np, rtol=1e-05) def test_add_scalar(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = 0.1 res = a + b np.testing.assert_array_equal(res.numpy(), a_np + b) def test_add_scalar_reverse(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = 0.1 res = b + a np.testing.assert_array_equal(res.numpy(), b + a_np) def test_sub_scalar(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = 0.1 res = a - b np.testing.assert_array_equal(res.numpy(), a_np - b) def test_sub_scalar_reverse(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = 0.1 res = b - a np.testing.assert_array_equal(res.numpy(), b - a_np) def test_mul_scalar(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = 0.1 res = a * b np.testing.assert_array_equal(res.numpy(), a_np * b) # div_scalar, not equal def test_div_scalar(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = 0.1 res = a / b np.testing.assert_allclose(res.numpy(), a_np / b, rtol=1e-05) # pow of float type, not equal def test_pow(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a**b np.testing.assert_allclose(res.numpy(), a_np**b_np, rtol=1e-05) def test_floor_div(self): a_np = np.random.randint(1, 100, size=self.shape) b_np = np.random.randint(1, 100, size=self.shape) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a // b np.testing.assert_array_equal(res.numpy(), a_np // b_np) def test_mod(self): a_np = np.random.randint(1, 100, size=self.shape) b_np = np.random.randint(1, 100, size=self.shape) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a % b np.testing.assert_array_equal(res.numpy(), a_np % b_np) # for bitwise and/or/xor/not def test_bitwise(self): paddle.disable_static() x_np = np.random.randint(-100, 100, [2, 3, 5]) y_np = np.random.randint(-100, 100, [2, 3, 5]) x = paddle.to_tensor(x_np) y = paddle.to_tensor(y_np) out_np = x_np & y_np out = x & y np.testing.assert_array_equal(out.numpy(), out_np) out_np = x_np | y_np out = x | y np.testing.assert_array_equal(out.numpy(), out_np) out_np = x_np ^ y_np out = x ^ y np.testing.assert_array_equal(out.numpy(), out_np) out_np = ~x_np out = ~x np.testing.assert_array_equal(out.numpy(), out_np) # for logical compare def test_equal(self): a_np = np.asarray([1, 2, 3, 4, 5]) b_np = np.asarray([1, 2, 3, 4, 5]) c_np = np.asarray([1, 2, 2, 4, 5]) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) c = fluid.dygraph.to_variable(c_np) res1 = a == b res2 = a == c np.testing.assert_array_equal(res1.numpy(), a_np == b_np) np.testing.assert_array_equal(res2.numpy(), a_np == c_np) def test_not_equal(self): a_np = np.asarray([1, 2, 3, 4, 5]) b_np = np.asarray([1, 2, 3, 4, 5]) c_np = np.asarray([1, 2, 2, 4, 5]) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) c = fluid.dygraph.to_variable(c_np) res1 = a != b res2 = a != c np.testing.assert_array_equal(res1.numpy(), a_np != b_np) np.testing.assert_array_equal(res2.numpy(), a_np != c_np) def test_less_than(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a < b np.testing.assert_array_equal(res.numpy(), a_np < b_np) def test_less_equal(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a <= b np.testing.assert_array_equal(res.numpy(), a_np <= b_np) def test_greater_than(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a > b np.testing.assert_array_equal(res.numpy(), a_np > b_np) def test_greater_equal(self): a_np = np.random.random(self.shape).astype(self.dtype) b_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a >= b np.testing.assert_array_equal(res.numpy(), a_np >= b_np) def test_neg(self): a_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) res = -a np.testing.assert_array_equal(res.numpy(), -a_np) def test_float_int_long(self): with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(np.array([100.1])) self.assertTrue(float(a) == 100.1) self.assertTrue(int(a) == 100) self.assertTrue(int(a) == 100) def test_len(self): a_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) self.assertTrue(len(a) == 10) def test_index(self): with fluid.dygraph.guard(): var1 = fluid.dygraph.to_variable(np.array([2])) i_tmp = 0 for i in range(var1): self.assertTrue(i == i_tmp) i_tmp = i_tmp + 1 list1 = [1, 2, 3, 4, 5] self.assertTrue(list1[var1] == 3) str1 = "just test" self.assertTrue(str1[var1] == 's') def test_np_left_mul(self): with fluid.dygraph.guard(): t = np.sqrt(2.0 * np.pi) x = paddle.ones((2, 2), dtype="float32") y = t * x np.testing.assert_allclose( y.numpy(), t * np.ones((2, 2), dtype='float32'), rtol=1e-05, atol=0.0, ) def test_add_different_dtype(self): a_np = np.random.random(self.shape).astype(np.float32) b_np = np.random.random(self.shape).astype(np.float16) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) res = a + b np.testing.assert_array_equal(res.numpy(), a_np + b_np) def test_floordiv_different_dtype(self): a_np = np.full(self.shape, 10, np.int64) b_np = np.full(self.shape, 2, np.int32) with fluid.dygraph.guard(): a = paddle.to_tensor(a_np) b = paddle.to_tensor(b_np) res = a // b np.testing.assert_array_equal(res.numpy(), a_np // b_np) def test_astype(self): a_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) res1 = a.astype(np.float16) res2 = a.astype('float16') res3 = a.astype(fluid.core.VarDesc.VarType.FP16) self.assertEqual(res1.dtype, res2.dtype) self.assertEqual(res1.dtype, res3.dtype) np.testing.assert_array_equal(res1.numpy(), res2.numpy()) np.testing.assert_array_equal(res1.numpy(), res3.numpy()) def test_conpare_op_broadcast(self): a_np = np.random.uniform(-1, 1, [10, 1, 10]).astype(self.dtype) b_np = np.random.uniform(-1, 1, [1, 1, 10]).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) b = fluid.dygraph.to_variable(b_np) self.assertEqual((a != b).dtype, fluid.core.VarDesc.VarType.BOOL) np.testing.assert_array_equal((a != b).numpy(), a_np != b_np) def test_tensor_patch_method(self): paddle.disable_static() x_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype) y_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype) z_np = np.random.uniform(-1, 1, [6, 9]).astype(self.dtype) x = paddle.to_tensor(x_np) y = paddle.to_tensor(y_np) z = paddle.to_tensor(z_np) a = paddle.to_tensor([[1, 1], [2, 2], [3, 3]]) b = paddle.to_tensor([[1, 1], [2, 2], [3, 3]]) # 1. Unary operation for Tensor self.assertEqual(x.dim(), 2) self.assertEqual(x.ndimension(), 2) self.assertEqual(x.ndim, 2) self.assertEqual(x.size, 6) self.assertEqual(x.numel(), 6) np.testing.assert_array_equal(x.exp().numpy(), paddle.exp(x).numpy()) np.testing.assert_array_equal(x.tanh().numpy(), paddle.tanh(x).numpy()) np.testing.assert_array_equal(x.atan().numpy(), paddle.atan(x).numpy()) np.testing.assert_array_equal(x.abs().numpy(), paddle.abs(x).numpy()) m = x.abs() np.testing.assert_array_equal(m.sqrt().numpy(), paddle.sqrt(m).numpy()) np.testing.assert_array_equal( m.rsqrt().numpy(), paddle.rsqrt(m).numpy() ) np.testing.assert_array_equal(x.ceil().numpy(), paddle.ceil(x).numpy()) np.testing.assert_array_equal( x.floor().numpy(), paddle.floor(x).numpy() ) np.testing.assert_array_equal(x.cos().numpy(), paddle.cos(x).numpy()) np.testing.assert_array_equal(x.acos().numpy(), paddle.acos(x).numpy()) np.testing.assert_array_equal(x.asin().numpy(), paddle.asin(x).numpy()) np.testing.assert_array_equal(x.sin().numpy(), paddle.sin(x).numpy()) np.testing.assert_array_equal(x.sinh().numpy(), paddle.sinh(x).numpy()) np.testing.assert_array_equal(x.cosh().numpy(), paddle.cosh(x).numpy()) np.testing.assert_array_equal( x.round().numpy(), paddle.round(x).numpy() ) np.testing.assert_array_equal( x.reciprocal().numpy(), paddle.reciprocal(x).numpy() ) np.testing.assert_array_equal( x.square().numpy(), paddle.square(x).numpy() ) np.testing.assert_array_equal(x.rank().numpy(), paddle.rank(x).numpy()) np.testing.assert_array_equal(x[0].t().numpy(), paddle.t(x[0]).numpy()) np.testing.assert_array_equal( x.asinh().numpy(), paddle.asinh(x).numpy() ) # acosh(x) = nan, need to change input t_np = np.random.uniform(1, 2, [2, 3]).astype(self.dtype) t = paddle.to_tensor(t_np) np.testing.assert_array_equal( t.acosh().numpy(), paddle.acosh(t).numpy() ) np.testing.assert_array_equal( x.atanh().numpy(), paddle.atanh(x).numpy() ) d = paddle.to_tensor( [ [1.2285208, 1.3491015, 1.4899898], [1.30058, 1.0688717, 1.4928783], [1.0958099, 1.3724753, 1.8926544], ] ) d = d.matmul(d.t()) # ROCM not support cholesky if not fluid.core.is_compiled_with_rocm(): np.testing.assert_array_equal( d.cholesky().numpy(), paddle.cholesky(d).numpy() ) np.testing.assert_array_equal( x.is_empty().numpy(), paddle.is_empty(x).numpy() ) np.testing.assert_array_equal( x.isfinite().numpy(), paddle.isfinite(x).numpy() ) np.testing.assert_array_equal( x.cast('int32').numpy(), paddle.cast(x, 'int32').numpy() ) np.testing.assert_array_equal( x.expand([3, 2, 3]).numpy(), paddle.expand(x, [3, 2, 3]).numpy() ) np.testing.assert_array_equal( x.tile([2, 2]).numpy(), paddle.tile(x, [2, 2]).numpy() ) np.testing.assert_array_equal( x.flatten().numpy(), paddle.flatten(x).numpy() ) index = paddle.to_tensor([0, 1]) np.testing.assert_array_equal( x.gather(index).numpy(), paddle.gather(x, index).numpy() ) index = paddle.to_tensor([[0, 1], [1, 2]]) np.testing.assert_array_equal( x.gather_nd(index).numpy(), paddle.gather_nd(x, index).numpy() ) np.testing.assert_array_equal( x.reverse([0, 1]).numpy(), paddle.reverse(x, [0, 1]).numpy() ) np.testing.assert_array_equal( a.reshape([3, 2]).numpy(), paddle.reshape(a, [3, 2]).numpy() ) np.testing.assert_array_equal( x.slice([0, 1], [0, 0], [1, 2]).numpy(), paddle.slice(x, [0, 1], [0, 0], [1, 2]).numpy(), ) np.testing.assert_array_equal( x.split(2)[0].numpy(), paddle.split(x, 2)[0].numpy() ) m = paddle.to_tensor( np.random.uniform(-1, 1, [1, 6, 1, 1]).astype(self.dtype) ) np.testing.assert_array_equal( m.squeeze([]).numpy(), paddle.squeeze(m, []).numpy() ) np.testing.assert_array_equal( m.squeeze([1, 2]).numpy(), paddle.squeeze(m, [1, 2]).numpy() ) m = paddle.to_tensor([2, 3, 3, 1, 5, 3], 'float32') np.testing.assert_array_equal( m.unique()[0].numpy(), paddle.unique(m)[0].numpy() ) np.testing.assert_array_equal( m.unique(return_counts=True)[1], paddle.unique(m, return_counts=True)[1], ) np.testing.assert_array_equal(x.flip([0]), paddle.flip(x, [0])) np.testing.assert_array_equal(x.unbind(0), paddle.unbind(x, 0)) np.testing.assert_array_equal(x.roll(1), paddle.roll(x, 1)) np.testing.assert_array_equal(x.cumsum(1), paddle.cumsum(x, 1)) m = paddle.to_tensor(1) np.testing.assert_array_equal(m.increment(), paddle.increment(m)) m = x.abs() np.testing.assert_array_equal(m.log(), paddle.log(m)) np.testing.assert_array_equal(x.pow(2), paddle.pow(x, 2)) np.testing.assert_array_equal(x.reciprocal(), paddle.reciprocal(x)) # 2. Binary operation np.testing.assert_array_equal( x.divide(y).numpy(), paddle.divide(x, y).numpy() ) np.testing.assert_array_equal( x.matmul(y, True, False).numpy(), paddle.matmul(x, y, True, False).numpy(), ) np.testing.assert_array_equal( x.norm(p='fro', axis=[0, 1]).numpy(), paddle.norm(x, p='fro', axis=[0, 1]).numpy(), ) np.testing.assert_array_equal( x.dist(y).numpy(), paddle.dist(x, y).numpy() ) np.testing.assert_array_equal( x.cross(y).numpy(), paddle.cross(x, y).numpy() ) m = x.expand([2, 2, 3]) n = y.expand([2, 2, 3]).transpose([0, 2, 1]) np.testing.assert_array_equal( m.bmm(n).numpy(), paddle.bmm(m, n).numpy() ) np.testing.assert_array_equal( x.histogram(5, -1, 1).numpy(), paddle.histogram(x, 5, -1, 1).numpy() ) np.testing.assert_array_equal( x.equal(y).numpy(), paddle.equal(x, y).numpy() ) np.testing.assert_array_equal( x.greater_equal(y).numpy(), paddle.greater_equal(x, y).numpy() ) np.testing.assert_array_equal( x.greater_than(y).numpy(), paddle.greater_than(x, y).numpy() ) np.testing.assert_array_equal( x.less_equal(y).numpy(), paddle.less_equal(x, y).numpy() ) np.testing.assert_array_equal( x.less_than(y).numpy(), paddle.less_than(x, y).numpy() ) np.testing.assert_array_equal( x.not_equal(y).numpy(), paddle.not_equal(x, y).numpy() ) np.testing.assert_array_equal( x.equal_all(y).numpy(), paddle.equal_all(x, y).numpy() ) np.testing.assert_array_equal( x.allclose(y).numpy(), paddle.allclose(x, y).numpy() ) m = x.expand([2, 2, 3]) np.testing.assert_array_equal( x.expand_as(m).numpy(), paddle.expand_as(x, m).numpy() ) index = paddle.to_tensor([2, 1, 0]) np.testing.assert_array_equal( a.scatter(index, b).numpy(), paddle.scatter(a, index, b).numpy() ) # 3. Bool tensor operation x = paddle.to_tensor([[True, False], [True, False]]) y = paddle.to_tensor([[False, False], [False, True]]) np.testing.assert_array_equal( x.logical_and(y).numpy(), paddle.logical_and(x, y).numpy() ) np.testing.assert_array_equal( x.logical_not(y).numpy(), paddle.logical_not(x, y).numpy() ) np.testing.assert_array_equal( x.logical_or(y).numpy(), paddle.logical_or(x, y).numpy() ) np.testing.assert_array_equal( x.logical_xor(y).numpy(), paddle.logical_xor(x, y).numpy() ) np.testing.assert_array_equal( x.logical_and(y).numpy(), paddle.logical_and(x, y).numpy() ) a = paddle.to_tensor([[1, 2], [3, 4]]) b = paddle.to_tensor([[4, 3], [2, 1]]) np.testing.assert_array_equal( x.where(a, b).numpy(), paddle.where(x, a, b).numpy() ) x_np = np.random.randn(3, 6, 9, 7) x = paddle.to_tensor(x_np) x_T = x.T self.assertTrue(x_T.shape, [7, 9, 6, 3]) np.testing.assert_array_equal(x_T.numpy(), x_np.T) self.assertTrue(inspect.ismethod(a.dot)) self.assertTrue(inspect.ismethod(a.logsumexp)) self.assertTrue(inspect.ismethod(a.multiplex)) self.assertTrue(inspect.ismethod(a.prod)) self.assertTrue(inspect.ismethod(a.scale)) self.assertTrue(inspect.ismethod(a.stanh)) self.assertTrue(inspect.ismethod(a.add_n)) self.assertTrue(inspect.ismethod(a.max)) self.assertTrue(inspect.ismethod(a.maximum)) self.assertTrue(inspect.ismethod(a.min)) self.assertTrue(inspect.ismethod(a.minimum)) self.assertTrue(inspect.ismethod(a.floor_divide)) self.assertTrue(inspect.ismethod(a.remainder)) self.assertTrue(inspect.ismethod(a.floor_mod)) self.assertTrue(inspect.ismethod(a.multiply)) self.assertTrue(inspect.ismethod(a.logsumexp)) self.assertTrue(inspect.ismethod(a.inverse)) self.assertTrue(inspect.ismethod(a.log1p)) self.assertTrue(inspect.ismethod(a.erf)) self.assertTrue(inspect.ismethod(a.addmm)) self.assertTrue(inspect.ismethod(a.clip)) self.assertTrue(inspect.ismethod(a.trace)) self.assertTrue(inspect.ismethod(a.kron)) self.assertTrue(inspect.ismethod(a.isinf)) self.assertTrue(inspect.ismethod(a.isnan)) self.assertTrue(inspect.ismethod(a.concat)) self.assertTrue(inspect.ismethod(a.broadcast_to)) self.assertTrue(inspect.ismethod(a.scatter_nd_add)) self.assertTrue(inspect.ismethod(a.scatter_nd)) self.assertTrue(inspect.ismethod(a.shard_index)) self.assertTrue(inspect.ismethod(a.chunk)) self.assertTrue(inspect.ismethod(a.stack)) self.assertTrue(inspect.ismethod(a.strided_slice)) self.assertTrue(inspect.ismethod(a.unsqueeze)) self.assertTrue(inspect.ismethod(a.unstack)) self.assertTrue(inspect.ismethod(a.argmax)) self.assertTrue(inspect.ismethod(a.argmin)) self.assertTrue(inspect.ismethod(a.argsort)) self.assertTrue(inspect.ismethod(a.masked_select)) self.assertTrue(inspect.ismethod(a.topk)) self.assertTrue(inspect.ismethod(a.index_select)) self.assertTrue(inspect.ismethod(a.nonzero)) self.assertTrue(inspect.ismethod(a.sort)) self.assertTrue(inspect.ismethod(a.index_sample)) self.assertTrue(inspect.ismethod(a.mean)) self.assertTrue(inspect.ismethod(a.std)) self.assertTrue(inspect.ismethod(a.numel)) def test_complex_scalar(self): a_np = np.random.random(self.shape).astype(self.dtype) with fluid.dygraph.guard(): a = fluid.dygraph.to_variable(a_np) res = 1j * a np.testing.assert_array_equal(res.numpy(), 1j * a_np) def test_matmul(self): x_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype) y_np = np.random.uniform(-1, 1, [3, 2]).astype(self.dtype) except_out = x_np @ y_np with fluid.dygraph.guard(): x = paddle.to_tensor(x_np) y = paddle.to_tensor(y_np) out = x @ y np.testing.assert_allclose(out.numpy(), except_out, atol=1e-03) if __name__ == '__main__': unittest.main()