# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.fluid as fluid import paddle.v2 as paddle import paddle.v2.dataset.mnist as mnist import numpy class ParallelExecutor(unittest.TestCase): def setUp(self): # Convert mnist to recordio file with fluid.program_guard(fluid.Program(), fluid.Program()): reader = paddle.batch(mnist.train(), batch_size=32) feeder = fluid.DataFeeder( feed_list=[ # order is image and label fluid.layers.data( name='image', shape=[784]), fluid.layers.data( name='label', shape=[1], dtype='int64'), ], place=fluid.CPUPlace()) fluid.recordio_writer.convert_reader_to_recordio_file( './mnist.recordio', reader, feeder) def test_main(self): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): reader = fluid.layers.open_recordio_file( filename='./mnist.recordio', shapes=[[-1, 784], [-1, 1]], lod_levels=[0, 0], dtypes=['float32', 'int64']) img, label = fluid.layers.read_file(reader) hidden = img for _ in xrange(4): hidden = fluid.layers.fc( hidden, size=200, act='tanh', bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=1.0))) prediction = fluid.layers.fc(hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) loss = fluid.layers.mean(loss) adam = fluid.optimizer.Adam() adam.minimize(loss) act_places = [] for each in [fluid.CUDAPlace(0)]: p = fluid.core.Place() p.set_place(each) act_places.append(p) exe = fluid.core.ParallelExecutor( act_places, set([p.name for p in main.global_block().iter_parameters()]), startup.desc, main.desc, loss.name, fluid.global_scope()) exe.run([loss.name], 'fetched_var') first_loss = numpy.array(fluid.global_scope().find_var('fetched_var') .get_lod_tensor_array()[0]) print first_loss for i in xrange(10): exe.run([], 'fetched_var') exe.run([loss.name], 'fetched_var') last_loss = numpy.array(fluid.global_scope().find_var('fetched_var') .get_lod_tensor_array()[0]) print first_loss, last_loss self.assertGreater(first_loss[0], last_loss[0])