// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" #include "paddle/phi/kernels/funcs/slice_utils.h" #include "paddle/phi/kernels/slice_kernel.h" namespace phi { template void SliceCompute(const Context& ctx, const DenseTensor& input, const std::vector& axes, const std::vector& starts_t, const std::vector& ends_t, const std::vector& infer_flags, const std::vector& decrease_axis, DenseTensor* out) { // Step 1: Get the accurate attribute value of starts and ends std::vector starts = starts_t; std::vector ends = ends_t; // Step 2: Compute output auto in = &input; auto in_dims = in->dims(); auto out_dims = out->dims(); auto slice_dims = out_dims; // 2.1 Infer output dims for (size_t i = 0; i < axes.size(); ++i) { // when start == -1 && end == start+1 if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) { auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]); if (ret != decrease_axis.end()) { ends[i] = in_dims[axes[i]]; } } } funcs::UpdateSliceAttrs(in_dims, axes, &starts, &ends); slice_dims = funcs::GetSliceDims( in_dims, axes, starts, ends, nullptr, nullptr); out_dims = funcs::GetDecreasedDims(slice_dims, decrease_axis); // 2.2 Get output auto offsets = Eigen::DSizes(); auto extents = Eigen::DSizes(); for (size_t i = 0; i < D; ++i) { offsets[i] = 0; extents[i] = slice_dims[i]; } for (size_t i = 0; i < axes.size(); ++i) { offsets[axes[i]] = starts[i]; } out->Resize(slice_dims); ctx.template Alloc(out); auto in_t = EigenTensor::From(*in, in_dims); auto out_t = EigenTensor::From(*out, slice_dims); auto& eigen_place = *ctx.eigen_device(); if (in->numel() <= Eigen::NumTraits::highest()) { // similar to tf.slice: // if element number less than INT_MAX, change the type of index to int Eigen::DSizes offsets_32bit, extents_32bit; for (size_t i = 0; i < D; i++) { offsets_32bit[i] = offsets[i]; extents_32bit[i] = extents[i]; } funcs::EigenSlice, T, D>::Eval( eigen_place, To32BitIndex(out_t), To32BitIndex(in_t), offsets_32bit, extents_32bit); } else { funcs::EigenSlice, T, D>::Eval( eigen_place, out_t, in_t, offsets, extents); } out->Resize(out_dims); } template void SliceKernel(const Context& ctx, const DenseTensor& input, const std::vector& axes, const IntArray& starts_arr, const IntArray& ends_arr, const std::vector& infer_flags, const std::vector& decrease_axis, DenseTensor* out) { int rank = input.dims().size(); auto& starts = starts_arr.GetData(); auto& ends = ends_arr.GetData(); switch (rank) { case 1: SliceCompute( ctx, input, axes, starts, ends, infer_flags, decrease_axis, out); break; case 2: SliceCompute( ctx, input, axes, starts, ends, infer_flags, decrease_axis, out); break; case 3: SliceCompute( ctx, input, axes, starts, ends, infer_flags, decrease_axis, out); break; case 4: SliceCompute( ctx, input, axes, starts, ends, infer_flags, decrease_axis, out); break; case 5: SliceCompute( ctx, input, axes, starts, ends, infer_flags, decrease_axis, out); break; case 6: SliceCompute( ctx, input, axes, starts, ends, infer_flags, decrease_axis, out); break; default: PADDLE_THROW(phi::errors::InvalidArgument( "The rank of input should be less than 7, but received %d.", rank)); } } template void SliceArrayKernel(const Context& dev_ctx, const TensorArray& input, const IntArray& starts, const IntArray& ends, TensorArray* out) { int64_t in_size = input.size(); int64_t start = starts[0] < 0 ? (starts[0] + in_size) : starts[0]; int64_t end = ends[0] < 0 ? (ends[0] + in_size) : ends[0]; start = std::max(start, static_cast(0)); end = std::max(end, static_cast(0)); end = std::min(end, in_size); if (starts[0] == -1 && end == 0) { end = start + 1; } PADDLE_ENFORCE_GT(end, start, phi::errors::InvalidArgument( "Attr(ends) should be greater than attr(starts) in " "slice op. But received end = %d, start = %d.", ends[0], starts[0])); int64_t out_size = end - start; out->resize(out_size); for (int i = 0; i < out_size; ++i) { auto* out_tensor = &out->at(i); const auto& in_tensor = input.at(i + start); out_tensor->set_lod(in_tensor.lod()); if (in_tensor.memory_size() > 0) { phi::Copy( dev_ctx, in_tensor, dev_ctx.GetPlace(), false, out_tensor); } else { VLOG(10) << "WARNING: The input tensor 'x_tensor' holds no memory, so " "nothing has been written to output array[" << i << "]."; } } } template void SliceArrayDenseKernel(const Context& dev_ctx, const TensorArray& input, const IntArray& starts, DenseTensor* out) { int64_t in_size = input.size(); int64_t start = starts[0] < 0 ? (starts[0] + in_size) : starts[0]; start = std::max(start, static_cast(0)); phi::Copy(dev_ctx, input[start], dev_ctx.GetPlace(), false, out); } } // namespace phi