# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import paddle import numpy as np from hybrid_parallel_mp_model import TestDistMPTraning import paddle.distributed.fleet as fleet import unittest class TestMPFP16(TestDistMPTraning): def build_optimizer(self, model): grad_clip = paddle.nn.ClipGradByGlobalNorm(1.0) scheduler = paddle.optimizer.lr.ExponentialDecay( learning_rate=0.001, gamma=0.999, verbose=True) optimizer = paddle.optimizer.SGD(scheduler, grad_clip=grad_clip, parameters=model.parameters()) model, optimizer = paddle.amp.decorate( models=model, optimizers=optimizer, level='O2', save_dtype='float32') return optimizer def train_batch(self, batch, model, optimizer, is_mp): scaler = paddle.amp.GradScaler(init_loss_scaling=5160) if is_mp: scaler = fleet.distributed_scaler(scaler) with paddle.amp.auto_cast(enable=True, level="O2"): output = model(batch) loss = output.mean() scaled = scaler.scale(loss) scaled.backward() scaler.step(optimizer) scaler.update() optimizer.clear_grad() return scaled if __name__ == "__main__": unittest.main()