# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import argparse import time import math import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler from paddle.fluid import core import unittest from multiprocessing import Process import os import signal import six import tarfile import string import re from functools import reduce from test_dist_base import TestDistRunnerBase, runtime_main DTYPE = "float32" VOCAB_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/imdb.vocab' VOCAB_MD5 = '23c86a0533c0151b6f12fa52b106dcc2' DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/text_classification.tar.gz' DATA_MD5 = '29ebfc94f11aea9362bbb7f5e9d86b8a' # Load dictionary. def load_vocab(filename): vocab = {} with open(filename, 'r', encoding="utf-8") as f: for idx, line in enumerate(f): vocab[line.strip()] = idx return vocab def get_worddict(dict_path): word_dict = load_vocab(dict_path) word_dict[""] = len(word_dict) dict_dim = len(word_dict) return word_dict, dict_dim def conv_net(input, dict_dim, emb_dim=128, window_size=3, num_filters=128, fc0_dim=96, class_dim=2): emb = fluid.layers.embedding( input=input, size=[dict_dim, emb_dim], is_sparse=False, param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( value=0.01))) conv_3 = fluid.nets.sequence_conv_pool( input=emb, num_filters=num_filters, filter_size=window_size, act="tanh", pool_type="max", param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.01))) fc_0 = fluid.layers.fc( input=[conv_3], size=fc0_dim, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.01))) prediction = fluid.layers.fc( input=[fc_0], size=class_dim, act="softmax", param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.01))) return prediction def inference_network(dict_dim): data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1) out = conv_net(data, dict_dim) return out def get_reader(word_dict, batch_size): # The training data set. train_reader = paddle.batch(train(word_dict), batch_size=batch_size) # The testing data set. test_reader = paddle.batch(test(word_dict), batch_size=batch_size) return train_reader, test_reader def get_optimizer(learning_rate): optimizer = fluid.optimizer.SGD(learning_rate=learning_rate) return optimizer class TestDistTextClassification2x2(TestDistRunnerBase): def get_model(self, batch_size=2): vocab = os.path.join(paddle.dataset.common.DATA_HOME, "text_classification", "imdb.vocab") word_dict, dict_dim = get_worddict(vocab) # Input data data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program predict = conv_net(data, dict_dim) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=predict, label=label) inference_program = fluid.default_main_program().clone() # Optimization opt = get_optimizer(learning_rate=0.001) opt.minimize(avg_cost) # Reader train_reader, test_reader = get_reader(word_dict, batch_size) return inference_program, avg_cost, train_reader, test_reader, acc, predict def tokenize(pattern): """ Read files that match the given pattern. Tokenize and yield each file. """ with tarfile.open( paddle.dataset.common.download(DATA_URL, 'text_classification', DATA_MD5)) as tarf: # Note that we should use tarfile.next(), which does # sequential access of member files, other than # tarfile.extractfile, which does random access and might # destroy hard disks. tf = tarf.next() while tf != None: if bool(pattern.match(tf.name)): # newline and punctuations removal and ad-hoc tokenization. yield tarf.extractfile(tf).read().rstrip(six.b( "\n\r")).translate( None, six.b(string.punctuation)).lower().split() tf = tarf.next() def reader_creator(pos_pattern, neg_pattern, word_idx): UNK = word_idx[''] INS = [] def load(pattern, out, label): for doc in tokenize(pattern): out.append(([word_idx.get(w, UNK) for w in doc], label)) load(pos_pattern, INS, 0) load(neg_pattern, INS, 1) def reader(): for doc, label in INS: yield doc, label return reader def train(word_idx): """ IMDB training set creator. It returns a reader creator, each sample in the reader is an zero-based ID sequence and label in [0, 1]. :param word_idx: word dictionary :type word_idx: dict :return: Training reader creator :rtype: callable """ return reader_creator( re.compile(r"train/pos/.*\.txt$"), re.compile(r"train/neg/.*\.txt$"), word_idx) def test(word_idx): """ IMDB test set creator. It returns a reader creator, each sample in the reader is an zero-based ID sequence and label in [0, 1]. :param word_idx: word dictionary :type word_idx: dict :return: Test reader creator :rtype: callable """ return reader_creator( re.compile(r"test/pos/.*\.txt$"), re.compile(r"test/neg/.*\.txt$"), word_idx) if __name__ == "__main__": paddle.dataset.common.download(VOCAB_URL, 'text_classification', VOCAB_MD5) paddle.dataset.common.download(DATA_URL, 'text_classification', DATA_MD5) runtime_main(TestDistTextClassification2x2)