# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import argparse import time import math import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler from paddle.fluid import core import unittest from multiprocessing import Process import os import signal from functools import reduce from test_dist_base import TestDistRunnerBase, runtime_main paddle.enable_static() DTYPE = "float32" paddle.dataset.mnist.fetch() # Fix seed for test fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 def cnn_model(data): conv_pool_1 = fluid.nets.simple_img_conv_pool( input=data, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu", param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( value=0.01))) conv_pool_2 = fluid.nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu", param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant( value=0.01))) SIZE = 10 input_shape = conv_pool_2.shape param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE] scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5 predict = fluid.layers.fc( input=conv_pool_2, size=SIZE, act="softmax", param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Constant(value=0.01))) return predict class TestDistMnist2x2(TestDistRunnerBase): def get_model(self, batch_size=2, single_device=False): # Input data images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE) label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program predict = cnn_model(images) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) # Evaluator batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy( input=predict, label=label, total=batch_size_tensor) inference_program = fluid.default_main_program().clone() # Reader train_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) # Optimization # TODO(typhoonzero): fix distributed adam optimizer # opt = fluid.optimizer.AdamOptimizer( # learning_rate=0.001, beta1=0.9, beta2=0.999) opt = fluid.optimizer.Momentum(learning_rate=self.lr, momentum=0.9) if single_device: opt.minimize(avg_cost) else: # multi device or distributed multi device params_grads = opt.backward(avg_cost) data_parallel_param_grads = [] for p, g in params_grads: # NOTE: scale will be done on loss scale in multi_devices_graph_pass using nranks. grad_reduce = fluid.layers.collective._allreduce(g) data_parallel_param_grads.append([p, grad_reduce]) opt.apply_gradients(data_parallel_param_grads) return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict if __name__ == "__main__": runtime_main(TestDistMnist2x2)