# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import argparse import os import sys import signal import time import socket from contextlib import closing from six import string_types import math import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler import paddle.fluid.unique_name as nameGen from paddle.fluid import core import unittest from multiprocessing import Process import paddle.fluid.layers as layers from functools import reduce from test_collective_base import TestCollectiveRunnerBase, runtime_main paddle.enable_static() class TestCollectiveSendRecv(TestCollectiveRunnerBase): def __init__(self): self.global_ring_id = 0 def get_model(self, main_prog, startup_program): ring_id = self.global_ring_id with fluid.program_guard(main_prog, startup_program): tindata = layers.data( name="tindata", shape=[10, 1000], dtype='float64', append_batch_size=False) if self.rank == 0: data1 = fluid.layers.assign( np.array( [[0, 1, 2]], dtype='float32')) data2 = fluid.layers.assign( np.array( [[3, 4, 5]], dtype='float32')) elif self.rank == 1: data1 = fluid.layers.assign( np.array( [[3, 4, 5]], dtype='float32')) data2 = fluid.layers.assign( np.array( [[0, 1, 2]], dtype='float32')) tensor_array = fluid.layers.create_array(dtype='float32') i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0) fluid.layers.array_write(data1, i, tensor_array) fluid.layers.array_write(data2, i + 1, tensor_array) if self.rank == 0: main_prog.global_block().append_op( type="send_v2", inputs={'X': tensor_array}, attrs={ 'ring_id': ring_id, 'peer': 1, 'use_calc_stream': True }) else: main_prog.global_block().append_op( type="recv_v2", outputs={'Out': tensor_array}, attrs={ 'peer': 0, 'ring_id': ring_id, 'dtype': data1.dtype, 'out_shape': [1, 3], 'use_calc_stream': True, }) return tensor_array if __name__ == "__main__": runtime_main(TestCollectiveSendRecv, "sendrecv_array", 0)