# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import six import inspect import numpy as np import collections import paddle from paddle.fluid import core from paddle.fluid.dygraph import layers from paddle.fluid.layers.utils import flatten from paddle.fluid.layers.utils import pack_sequence_as from paddle.fluid.dygraph.base import switch_to_static_graph from paddle.fluid.dygraph.dygraph_to_static import logging_utils from paddle.fluid.dygraph.dygraph_to_static.utils import parse_arg_and_kwargs from paddle.fluid.dygraph.dygraph_to_static.utils import parse_varargs_name from paddle.fluid.dygraph.dygraph_to_static.utils import type_name from paddle.fluid.dygraph.dygraph_to_static.utils import func_to_source_code from paddle.fluid.dygraph.io import TranslatedLayer class FunctionSpec(object): """ Wrapper class for a function for class method. """ def __init__(self, function, input_spec=None): self._dygraph_function = function if input_spec is None: self._input_spec = None self._flat_input_spec = None else: self._input_spec = self._verify_input_spec(input_spec) self._flat_input_spec = flatten(self._input_spec) # parse full argument names list. self._arg_names, self._default_kwargs = parse_arg_and_kwargs(function) # parse *args self.varargs_name = parse_varargs_name(function) if self.varargs_name is not None and isinstance(function.__self__, TranslatedLayer): self._arg_names += function.__self__._input_args_names def unified_args_and_kwargs(self, args, kwargs): """ Moves kwargs with default value into arguments list to keep `args` contain the same length value as function definition. For example: Given function definition: `def foo(x, a=1, b=2)`, when calling it by `foo(23)`, the args is `[23]`, kwargs is `{a=1, b=2}`. In this function, it will return args with `[23, 1, 2]`, kwargs with `{}` Args: args(tuple): tuple of input arguments value of decorated function. kwargs(dict): dict of input keyword arguments value of decorated function. Return: New arguments tuple containing default kwargs value. """ if len(self._arg_names) < len(args): error_msg = "The decorated function `{}` requires {} arguments: {}, but received {} with {}.".format( self._dygraph_function.__name__, len(self._arg_names), self._arg_names, len(args), args) if args and inspect.isclass(args[0]): error_msg += "\n\tMaybe the function has more than one decorator, we don't support this for now." raise NotImplementedError(error_msg) else: raise ValueError(error_msg) args = list(args) for i in six.moves.range(len(args), len(self._arg_names)): arg_name = self._arg_names[i] if arg_name in kwargs: args.append(kwargs[arg_name]) del kwargs[arg_name] else: if arg_name not in self._default_kwargs: raise ValueError( "`{}()` requires `{}` arguments, but not found in input `args`: {} and `kwargs`: {}." .format(self._dygraph_function.__name__, arg_name, args, kwargs)) args.append(self._default_kwargs[arg_name]) return tuple(args), kwargs def _replace_value_with_input_spec(self, args): args_with_spec = [] for idx, input_var in enumerate(flatten(args)): if isinstance(input_var, np.ndarray): input_var = paddle.static.InputSpec.from_numpy(input_var) _set_spec_stop_gradient(input_var, True) elif isinstance(input_var, (core.VarBase, core.eager.Tensor)): stop_gradient = input_var.stop_gradient input_var = paddle.static.InputSpec.from_tensor(input_var) _set_spec_stop_gradient(input_var, stop_gradient) args_with_spec.append(input_var) args_with_spec = pack_sequence_as(args, args_with_spec) return args_with_spec def args_to_input_spec(self, args, kwargs): """ Converts input arguments into InputSpec. 1. If specific input_spec, use them to construct feed layers. 2. If input_spec is None, consider all Tensor and Numpy.ndarray as feed layers Args: args(tuple): tuple of input arguments value of function containing default kwargs value. kwargs(dict): kwargs arguments received by **kwargs. Return: Same nest structure with args and kwargs by replacing value with InputSpec. """ args_with_spec = [] kwargs_with_spec = [] if self._input_spec is not None: # Note: Because the value type and length of `kwargs` is uncertain. # So we don't support to deal this case while specificing `input_spec` currently. if kwargs: raise ValueError( "{} got unexpected keyword arguments: {}. Cannot trace the function when `input_spec` is specificed." .format(self._dygraph_function.__name__, kwargs)) # Note: The length of `input_spec` can be greater than `args`, # because `args` may contains non-tensor value merged form `kwargs` # after `unified_args_and_kwargs`. if len(args) < len(self._input_spec): raise ValueError( "Requires len(arguments) >= len(input_spec), but received len(args):{} < len(InputSpec): {}" .format(len(args), len(self._input_spec))) # replace argument with corresponding InputSpec. args_with_spec = convert_to_input_spec(args, self._input_spec) else: args_with_spec = self._replace_value_with_input_spec(args) kwargs_with_spec = self._replace_value_with_input_spec(kwargs) # If without specificing name in input_spec, add default name # according to argument name from decorated function. args_with_spec = replace_spec_empty_name(self._arg_names, args_with_spec) return args_with_spec, kwargs_with_spec @switch_to_static_graph def to_static_inputs_with_spec(self, input_with_spec, main_program): """ Constructs feed layer by inputs with InputSpec information for main program. Args: input_with_spec(tuple): input arguments by replacing argument with InputSpec. main_program(Program): main program for inserting feed layer. """ flat_input_spec = flatten(input_with_spec) inputs = [] block = main_program.global_block() for i, var_spec in enumerate(flat_input_spec): if isinstance(var_spec, paddle.static.InputSpec): stop_gradient = getattr(var_spec, 'stop_gradient', False) feed_layer = block.create_var( # TODO(Aurelius84): consider a more elegant way to name this name=var_spec.name or "feed_%s" % i, shape=var_spec.shape, dtype=var_spec.dtype, is_data=True, need_check_feed=False, stop_gradient=stop_gradient) else: feed_layer = var_spec inputs.append(feed_layer) return pack_sequence_as(input_with_spec, inputs) def _verify_input_spec(self, input_spec): """ Verifies the `input_spec` and its element type is valid. """ if not isinstance(input_spec, (tuple, list)): raise TypeError( "The type(input_spec) should be one of (tuple, list), but received {}." .format(type_name(input_spec))) return tuple(input_spec) def __repr__(self): return "function: {}({}), input_spec: {}".format( self._dygraph_function.__name__, ','.join(self._arg_names), self._input_spec) @property def dygraph_function(self): return self._dygraph_function @property def args_name(self): return self._arg_names @property def input_spec(self): return self._input_spec @property def flat_input_spec(self): return self._flat_input_spec @property def code(self): return func_to_source_code(self._dygraph_function) def get_parameters(layer_instance, include_sublayer=True): """ Returns parameters of decorated layers. If set `include_sublayer` True, the parameters created in sub layers will be added. """ params = collections.OrderedDict() if layer_instance is not None: if isinstance(layer_instance, layers.Layer): if include_sublayer: params = layer_instance.parameters() names = [p.name for p in params] params = collections.OrderedDict(zip(names, params)) else: params = layer_instance._parameters else: raise TypeError( "Type of `layer_instance` should be nn.Layer, but received {}". format(type_name(layer_instance))) return params def get_buffers(layer_instance, include_sublayer=True): """ Returns Variable buffers of decorated layers. If set `include_sublayer` True, the Variable buffers created in sub layers will be added. """ buffers = collections.OrderedDict() if layer_instance is not None: if isinstance(layer_instance, layers.Layer): if include_sublayer: buffers = layer_instance.buffers() names = [buffer.name for buffer in buffers] buffers = collections.OrderedDict(zip(names, buffers)) else: buffers = layer_instance._buffers else: raise TypeError( "Type of `layer_instance` should be nn.Layer, but received {}". format(type_name(layer_instance))) return buffers def convert_to_input_spec(inputs, input_spec): """ Replaces tensor in structured `inputs` by InputSpec in `input_spec`. Args: inputs(list|dict): nested structure list or dict. input_spec(list|dict): same nested structure list or dict as inputs. Return: Same structure with inputs by replacing the element with specified InputSpec. """ def check_type_and_len(input, spec, check_length=False): if type(input) is not type(spec): raise TypeError('type(input) should be {}, but received {}.'.format( type(spec), type(input))) if check_length and len(input) < len(spec): raise ValueError( 'Requires len(inputs) >= len(input_spec), but received len(inputs):{} < len(input_spec):{}' .format(len(inputs), len(input_spec))) if isinstance(input_spec, (tuple, list)): input_with_spec = [] check_type_and_len(inputs, input_spec, True) for i, spec in enumerate(input_spec): out_spec = convert_to_input_spec(inputs[i], spec) input_with_spec.append(out_spec) # Note: If the rest inputs contain tensor or numpy.ndarray # without specific InputSpec, raise warning. if len(inputs) > len(input_spec): for rest_input in inputs[len(input_spec):]: if isinstance(rest_input, (core.VarBase, np.ndarray)): logging_utils.warn( "The inputs constain `{}` without specificing InputSpec, its shape and dtype will be treated immutable. " "Please specific InputSpec information in `@to_static` if you expect them as mutable inputs." .format(type_name(rest_input))) input_with_spec.extend(inputs[len(input_spec):]) return input_with_spec elif isinstance(input_spec, dict): input_with_spec = {} check_type_and_len(inputs, input_spec, True) for name, input in six.iteritems(inputs): if name in input_spec: input_with_spec[name] = convert_to_input_spec( input, input_spec[name]) else: input_with_spec[name] = input return input_with_spec elif isinstance(input_spec, paddle.static.InputSpec): return input_spec else: # NOTE(Aurelius84): Support non-Tensor type as input spec info return input_spec def replace_spec_empty_name(args_name, input_with_spec): """ Adds default name according to argument name from decorated function if without specificing InputSpec.name The naming rule are as followed: 1. If InputSpec.name is not None, do nothing. 2. If each argument `x` corresponds to an InputSpec, using the argument name like `x` 3. If the arguments `inputs` corresponds to a list(InputSpec), using name like `inputs_0`, `inputs_1` 4. If the arguments `input_dic` corresponds to a dict(InputSpec), using key as name. For example: # case 1: foo(x, y) foo = to_static(foo, input_spec=[InputSpec([None, 10]), InputSpec([None])]) print([in_var.name for in_var in foo.inputs]) # [x, y] # case 2: foo(inputs) where inputs is a list foo = to_static(foo, input_spec=[[InputSpec([None, 10]), InputSpec([None])]]) print([in_var.name for in_var in foo.inputs]) # [inputs_0, inputs_1] # case 3: foo(inputs) where inputs is a dict foo = to_static(foo, input_spec=[{'x': InputSpec([None, 10]), 'y': InputSpec([None])}]) print([in_var.name for in_var in foo.inputs]) # [x, y] """ input_with_spec = list(input_with_spec) candidate_arg_names = args_name[:len(input_with_spec)] for i, arg_name in enumerate(candidate_arg_names): input_spec = input_with_spec[i] input_with_spec[i] = _replace_spec_name(arg_name, input_spec) return input_with_spec def _replace_spec_name(name, input_spec): """ Replaces InputSpec.name with given `name` while not specificing it. """ if isinstance(input_spec, paddle.static.InputSpec): if input_spec.name is None: input_spec.name = name return input_spec elif isinstance(input_spec, (list, tuple)): processed_specs = [] for i, spec in enumerate(input_spec): new_name = "{}_{}".format(name, i) processed_specs.append(_replace_spec_name(new_name, spec)) return processed_specs elif isinstance(input_spec, dict): processed_specs = {} for key, spec in six.iteritems(input_spec): processed_specs[key] = _replace_spec_name(key, spec) return processed_specs else: return input_spec def _set_spec_stop_gradient(spec, stop_gradient): """ Set new attribute ``stop_gradient`` for InputSpec to avoid generating redundant grad_op while append_backward. """ assert isinstance(spec, paddle.static.InputSpec) spec.stop_gradient = stop_gradient def _hash_spec_names(args_specs, kwargs_specs): """ Generater hash spec with args/kwargs InputSpec names. Consider the following InputSpecs with same shape/dtype except for name: 1. [InputSpec([3,3], 'float32', 'x'), InputSpec([3,3], 'float32', 'x')] 2. [InputSpec([3,3], 'float32', 'x'), InputSpec([3,3], 'float32', 'y')] Under @to_static, we should generate two different program not just one, because the former has one input ('x'), but the latter has two input ('x', 'y'). """ spec_names = [ spec.name for spec in flatten(args_specs) if isinstance(spec, paddle.static.InputSpec) ] spec_names += [ spec.name for spec in flatten(kwargs_specs) if isinstance(spec, paddle.static.InputSpec) ] i, name_ids = 0, {} def to_idx(name): nonlocal i if name not in name_ids: name_ids[name] = i i += 1 return name_ids[name] value = [to_idx(name) for name in spec_names] return tuple(value)