// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/executor_cache.h" #include "paddle/fluid/framework/new_executor/interpretercore.h" #include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/ir/transforms/pd_op_to_kernel_pass.h" #include "paddle/fluid/ir_adaptor/translator/translate.h" #include "paddle/ir/core/program.h" #include "paddle/ir/core/value.h" namespace paddle { namespace framework { class ProgramDesc; } // namespace framework } // namespace paddle namespace paddle { namespace framework { namespace details { static ExecutionStrategy GetExecutionStrategy(const platform::Place &place) { framework::ExecutionStrategy execution_strategy; auto device_type = platform::Place2DeviceType(place); switch (device_type) { case platform::DeviceType::CPU: { execution_strategy.num_threads_ = 2; break; } case platform::DeviceType::CUDA: { // NOTE: According experiments, one thread is faster in // most model training. execution_strategy.num_threads_ = 1; break; } case platform::DeviceType::XPU: { execution_strategy.num_threads_ = 1; break; } case platform::DeviceType::IPU: { execution_strategy.num_threads_ = 1; break; } case platform::DeviceType::CUSTOM_DEVICE: { execution_strategy.num_threads_ = 1; break; } default: PADDLE_THROW(platform::errors::Unavailable("Unsupported Device type %d.", device_type)); } execution_strategy.use_device_ = device_type; return execution_strategy; } void AppendSkipDeletionVars(const std::vector &append_vars, std::vector *all_vars) { for (auto &var : append_vars) { all_vars->emplace_back(var); } } /* * NOTE(Aurelius84): In ParallelExecutor, memory optimized pass will be applied. * To avoid eagerly deleting last alive variables which are necessary in * backward program, we firstly parse these variable names as * skip_eager_vars. While executing pe.run skip_eager_vars are used to * skip memory optimization. * * Variables satisfying the following rules are considered as skip_eager_var: * * 1. it is an output var in run_program_op * 2. it is an input var used in backward_op */ void ParseSafeEagerDeletionSkipVars( const ProgramDesc &program, int64_t forward_op_nums, const std::vector &output_var_names, std::vector *skip_eager_delete_vars) { auto all_ops = program.Block(0).AllOps(); auto &op_info_map = OpInfoMap::Instance(); // NOTE: skip `shape` and `fill_constant` op created by // fluid.backward.gradients, one forward output will generate one `shape` // and `fill_constant`. size_t backward_op_start_index = forward_op_nums + (output_var_names.size() * 2); // step 2: parse the necessary variable of backward op std::unordered_set op_outputs; std::unordered_set op_inputs; std::unordered_set no_need_buffer_ins; for (auto i = backward_op_start_index; i < all_ops.size(); ++i) { framework::OpDesc *op = all_ops[i]; // NOTE: skip NoNeedBufferVars of grad_op and GC its memory in advance. auto &op_info = op_info_map.Get(op->Type()); auto &inferer = op_info.NoNeedBufferVarsInferer(); no_need_buffer_ins.clear(); if (inferer != nullptr) { no_need_buffer_ins = inferer(op->Inputs(), op->Outputs(), op->GetAttrMap()); } for (auto &in_names : op->Inputs()) { if (no_need_buffer_ins.count(in_names.first) == 0) { for (auto &in_name : in_names.second) { op_inputs.emplace(in_name); } } else { VLOG(2) << op->Type() << " has no_need_buffer_in: " << in_names.first << " , skip it."; } } for (const std::string &out_arg_name : op->OutputArgumentNames()) { op_outputs.emplace(out_arg_name); } } // For the grad op input variables, if it is not output of grad_op, it may // be output of forward op and we should set the variables as skip_var to // prevent it being deleted when grad op is called multiple times. for (const std::string &var_name : op_inputs) { if (op_outputs.find(var_name) == op_outputs.end()) { VLOG(2) << "skip eager var: " << var_name; skip_eager_delete_vars->emplace_back(var_name); } } VLOG(3) << "Found skip_eager_delete_vars: " << skip_eager_delete_vars->size(); } void AppendSkipDeletionVars(const std::vector &append_vars, std::set *all_vars) { for (auto &var : append_vars) { all_vars->insert(var); } } std::set ParseSafeEagerDeletionSkipVarsSet( const ProgramDesc &backward_program, bool skip_no_need_buffer) { std::set skip_eager_delete_vars; auto backward_ops = backward_program.Block(0).AllOps(); auto &op_info_map = OpInfoMap::Instance(); std::unordered_set op_outputs; std::unordered_set op_inputs; std::unordered_set no_need_buffer_ins; for (auto op : backward_ops) { VLOG(4) << "parse op type: " << op->Type(); if (op->Type() == "share_buffer") { VLOG(1) << "skip share_buffer op"; continue; } // NOTE: skip NoNeedBufferVars of grad_op and GC its memory in advance. auto &op_info = op_info_map.Get(op->Type()); auto &inferer = op_info.NoNeedBufferVarsInferer(); no_need_buffer_ins.clear(); // TODO(Aurelius84): Need remove skip_no_need_buffer after cinn fix this // problem. if (inferer != nullptr && !skip_no_need_buffer) { no_need_buffer_ins = inferer(op->Inputs(), op->Outputs(), op->GetAttrMap()); } for (auto &in_names : op->Inputs()) { if (no_need_buffer_ins.count(in_names.first) == 0) { for (auto &in_name : in_names.second) { op_inputs.emplace(in_name); } } else { VLOG(2) << op->Type() << " has no_need_buffer_in: " << in_names.first << " , skip it."; } } for (const std::string &out_arg_name : op->OutputArgumentNames()) { op_outputs.emplace(out_arg_name); } } for (const std::string &var_name : op_inputs) { VLOG(4) << "parse op.input: " << var_name; if (op_outputs.find(var_name) == op_outputs.end()) { VLOG(1) << "skip eager var: " << var_name; skip_eager_delete_vars.insert(var_name); } } VLOG(1) << "Found skip_eager_delete_vars: " << skip_eager_delete_vars.size(); return skip_eager_delete_vars; } } // namespace details // C++11 removes the need for manual locking. Concurrent execution shall wait if // a static local variable is already being initialized. // https://stackoverflow.com/questions/11711920/how-to-implement-multithread-safe-singleton-in-c11-without-using-mutex ExecutorInfoCache &ExecutorInfoCache::Instance() { static ExecutorInfoCache g_exe_cache_info_map; return g_exe_cache_info_map; } static PEAndGraphPair CreateExecutorInfo( const ProgramDesc &program_desc, const platform::Place &place, int64_t start_op_index, int64_t end_op_index, framework::Scope *scope, const details::BuildStrategy &build_strategy) { auto execution_strategy = details::GetExecutionStrategy(place); auto graph = std::make_shared( program_desc, start_op_index, end_op_index); auto parallel_executor = std::make_shared( place, scope, execution_strategy, build_strategy, graph.get()); parallel_executor->PrepareVariables(scope); return std::make_pair(parallel_executor, graph); } PEAndGraphPair CreateFixOrderExecutorInfo(const ProgramDesc &program_desc, const platform::Place &place, int64_t start_op_index, int64_t end_op_index, framework::Scope *scope) { details::BuildStrategy build_strategy; build_strategy.fix_op_run_order_ = true; auto pe_and_graph = CreateExecutorInfo( program_desc, place, start_op_index, end_op_index, scope, build_strategy); return pe_and_graph; } CacheInfo GetExecutorInfoFromCache(const ProgramDesc &program_desc, const platform::Place &place, int64_t start_op_index, int64_t end_op_index, bool is_grad, int64_t program_id, framework::Scope *scope) { auto &cached_exe_info = framework::ExecutorInfoCache::Instance(); if (!cached_exe_info.Has(program_id, is_grad)) { // TODO(Aurelius84): Consider to use LRU algorithm to replace this. if (cached_exe_info.Size() > 4u /* max_cached_size*/) { VLOG(2) << "The cached info size has exceeded max_cached_size: 4, clear " "all cache!"; cached_exe_info.Finalize(); } VLOG(1) << "create exe_info for " << program_id << " is_grad: " << is_grad; auto &build_strategy = cached_exe_info.GetBuildStrategy(program_id); // 2. Construct Graph and ParallelExecutor. auto pe_and_graph = CreateExecutorInfo(program_desc, place, start_op_index, end_op_index, scope, build_strategy); // 3. Insert value into cached map. auto &cached_value = cached_exe_info.GetMutable(program_id, is_grad); cached_value.executor_ = pe_and_graph.first; cached_value.graph_ = pe_and_graph.second; return std::make_pair(pe_and_graph.first, true); } else { VLOG(1) << "get exe_info from cache by: " << program_id << " is_grad: " << is_grad; auto &cached_value = cached_exe_info.GetMutable(program_id, is_grad); auto ¶llel_executor = cached_value.executor_; // update op_handle scope_map in pe->executor_->Graph std::unordered_map scope_map = { {parallel_executor->GetLocalScopes().front(), scope}}; parallel_executor->ResetOpHandleScopeMapOfGraphs(scope_map); // need to recreate tmp variables in new scope parallel_executor->PrepareVariables(scope); return std::make_pair(parallel_executor, false); } } InterpreterCoreInfoCache &InterpreterCoreInfoCache::Instance() { static InterpreterCoreInfoCache g_info_cache; return g_info_cache; } std::shared_ptr CreateProgramInterpreterCoreInfoToCache( const ProgramDesc &program_desc, const platform::Place &place, bool is_grad, int64_t program_id, framework::Scope *scope) { auto &interpretercore_info_cache = framework::InterpreterCoreInfoCache::Instance(); if (interpretercore_info_cache.Size() > 10u /* max_cached_size*/) { VLOG(2) << "The cached info size has exceeded max_cached_size: 4, clear " "all cache!"; interpretercore_info_cache.Finalize(); } interpreter::ExecutionConfig execution_config; execution_config.create_local_scope = false; execution_config.used_for_jit = true; std::shared_ptr core = nullptr; core.reset(new InterpreterCore( place, program_desc.Block(0), scope, execution_config)); auto &cached_value = interpretercore_info_cache.GetMutable(program_id, scope, is_grad); cached_value.core_ = core; return core; } std::shared_ptr CreateNewIRInterpreterCoreInfoToCache( std::unique_ptr<::ir::Program> ir_program, const platform::Place &place, bool is_grad, int64_t program_id, framework::Scope *scope) { auto &interpretercore_info_cache = framework::InterpreterCoreInfoCache::Instance(); if (interpretercore_info_cache.Size() > 10u /* max_cached_size*/) { VLOG(2) << "The cached info size has exceeded max_cached_size: 4, clear " "all cache!"; interpretercore_info_cache.Finalize(); } interpreter::ExecutionConfig execution_config; execution_config.create_local_scope = false; execution_config.used_for_jit = true; std::shared_ptr core = nullptr; core.reset(new InterpreterCore( place, {}, std::move(ir_program), scope, execution_config)); auto &cached_value = interpretercore_info_cache.GetMutable(program_id, scope, is_grad); cached_value.core_ = core; return core; } std::unique_ptr<::ir::Program> ConstructFowardIrProgram( const paddle::framework::BlockDesc *forward_global_block, const paddle::framework::BlockDesc *backward_global_block, const std::vector output_names, const std::vector &x, const std::vector ¶ms) { auto ir_ctx = ::ir::IrContext::Instance(); auto program = std::make_unique<::ir::Program>(ir_ctx); std::set set_output_names; auto local_program = paddle::framework::ProgramDesc(*(forward_global_block->Program())); for (auto op_desc : local_program.Block(0).AllOps()) { for (const auto &n : op_desc->Outputs()) { const auto &input_var_names = n.second; for (const auto &var_name : input_var_names) { set_output_names.insert(var_name); } } } // add data op to program auto *block = local_program.MutableBlock(0); for (auto &in_t : x) { auto name = in_t.name(); if (block->FindVarRecursive(name) == nullptr) { continue; } auto place = in_t.place().GetType(); auto op_desc = block->PrependOp(); op_desc->SetType("data"); op_desc->SetAttr("index", 0); // TODO(phlrain) : using tensor dtype op_desc->SetAttr("dtype", 0); op_desc->SetAttr("place", static_cast(place)); op_desc->SetAttr("name", name); op_desc->SetOutput("out", {name}); } std::set input_param_names; for (auto ¶m : params) { auto &name = param.name(); auto place = param.place().GetType(); auto op_desc = local_program.MutableBlock(0)->PrependOp(); op_desc->SetType("data"); op_desc->SetAttr("index", 0); // TODO(phlrain) : using tensor dtype op_desc->SetAttr("dtype", 0); op_desc->SetAttr("place", static_cast(place)); op_desc->SetAttr("name", name); op_desc->SetOutput("out", {name}); input_param_names.insert(name); } std::set set_parameter_names; for (auto op_desc : backward_global_block->Program()->Block(0).AllOps()) { for (const auto &n : op_desc->Inputs()) { const auto &input_var_names = n.second; for (const auto &var_name : input_var_names) { set_parameter_names.insert(var_name); } } } for (auto &t : output_names) { set_parameter_names.insert(t); } for (auto &name : set_parameter_names) { if (!set_output_names.count(name)) { continue; } if (input_param_names.count(name)) { continue; } auto op_desc = local_program.MutableBlock(0)->AppendOp(); op_desc->SetType("shadow_output"); op_desc->SetAttr("name", name); op_desc->SetInput("x", {name}); op_desc->SetOutput("out", {"@EMPTY@"}); } paddle::translator::ProgramTranslator program_translator(&local_program, program.get()); program_translator.Translate(); auto ir_res = paddle::dialect::PdOpLowerToKernelPass(program.get()); return ir_res; } std::unique_ptr<::ir::Program> ConstructBackwardIrProgram( const paddle::framework::BlockDesc *backward_global_block, const std::vector &out_grad, const std::vector &x_grad, const std::vector ¶ms_grad, const paddle::framework::Scope *scope) { auto ir_ctx = ::ir::IrContext::Instance(); auto program = std::make_unique<::ir::Program>(ir_ctx); auto local_program = paddle::framework::ProgramDesc(*(backward_global_block->Program())); // get feed with data std::set set_parameter_names; for (auto op_desc : backward_global_block->Program()->Block(0).AllOps()) { for (const auto &n : op_desc->Inputs()) { const auto &input_var_names = n.second; for (const auto &var_name : input_var_names) { set_parameter_names.insert(var_name); } } } for (auto &var_name : set_parameter_names) { if (scope->FindVar(var_name)) { auto tensor = scope->FindVar(var_name)->Get(); phi::AllocationType place(phi::AllocationType::UNDEFINED); if (tensor.initialized()) { place = tensor.place().GetType(); } if (var_name == "@EMPTY@") { continue; } auto op_desc = local_program.MutableBlock(0)->PrependOp(); op_desc->SetType("data"); op_desc->SetAttr("index", 0); // TODO(phlrain) : using tensor dtype op_desc->SetAttr("dtype", 0); op_desc->SetAttr("place", static_cast(place)); op_desc->SetAttr("name", var_name); op_desc->SetOutput("out", {var_name}); } } std::vector param_grad_names; for (auto &p_g : params_grad) { param_grad_names.push_back(p_g->name()); } for (auto &t : x_grad) { param_grad_names.push_back(t->name()); } for (auto &name : param_grad_names) { if (name == "@EMPTY@") { continue; } auto op_desc = local_program.MutableBlock(0)->AppendOp(); op_desc->SetType("shadow_output"); op_desc->SetAttr("name", name); op_desc->SetInput("x", {name}); op_desc->SetOutput("out", {"@EMPTY@"}); } paddle::translator::ProgramTranslator program_translator(&local_program, program.get()); program_translator.Translate(); auto res = paddle::dialect::PdOpLowerToKernelPass(program.get()); return res; } } // namespace framework } // namespace paddle