/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/chunk_eval_op.h" #include #include namespace paddle { namespace operators { class ChunkEvalOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Inference"), "Input(Inference) of ChunkEvalOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) of ChunkEvalOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Precision"), "Output(Precision) of ChunkEvalOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Recall"), "Output(Recall) of ChunkEvalOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("F1-Score"), "Output(F1-Score) of ChunkEvalOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("NumInferChunks"), "Output(NumInferChunks) of ChunkEvalOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("NumLabelChunks"), "Output(NumLabelChunks) of ChunkEvalOp should not be null."); PADDLE_ENFORCE( ctx->HasOutput("NumCorrectChunks"), "Output(NumCorrectChunks) of ChunkEvalOp should not be null."); auto inference_dim = ctx->GetInputDim("Inference"); auto label_dim = ctx->GetInputDim("Label"); PADDLE_ENFORCE(inference_dim == label_dim, "Inference's shape must be the same as Label's shape."); ctx->SetOutputDim("Precision", {1}); ctx->SetOutputDim("Recall", {1}); ctx->SetOutputDim("F1-Score", {1}); ctx->SetOutputDim("NumInferChunks", {1}); ctx->SetOutputDim("NumLabelChunks", {1}); ctx->SetOutputDim("NumCorrectChunks", {1}); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType(framework::proto::VarType::FP32, platform::CPUPlace()); } }; class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker { public: ChunkEvalOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Inference", "(Tensor, default: Tensor). " "Predictions from the network."); AddInput("Label", "(Tensor, default: Tensor). The true tag sequences."); AddOutput("Precision", "(float). The evaluated precision (called positive predictive " "value) of chunks on the given mini-batch."); AddOutput("Recall", "(float). The evaluated recall (true positive rate or " "sensitivity) of chunks on the given mini-batch."); AddOutput("F1-Score", "(float). The evaluated F1-Score on the given mini-batch."); AddOutput("NumInferChunks", "(int64_t). The number of chunks in Inference on the given " "mini-batch."); AddOutput( "NumLabelChunks", "(int64_t). The number of chunks in Label on the given mini-batch."); AddOutput( "NumCorrectChunks", "(int64_t). The number of chunks both in Inference and Label on the " "given mini-batch."); AddAttr("num_chunk_types", "(int). The number of chunk type. See below for details."); AddAttr( "chunk_scheme", "(string, default IOB). The labeling scheme indicating " "how to encode the chunks. Must be IOB, IOE, IOBES or plain. See below " "for details.") .SetDefault("IOB"); AddAttr>("excluded_chunk_types", "(list) A list including chunk type ids " "indicating chunk types that are not counted. " "See below for details.") .SetDefault(std::vector{}); AddComment(R"DOC( For some basics of chunking, please refer to ‘Chunking with Support Vector Machines ’. CheckEvalOp computes the precision, recall, and F1-score of chunk detection, and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes. Here is a NER example of labeling for these tagging schemes: Li Ming works at Agricultural Bank of China in Beijing. IO: I-PER I-PER O O I-ORG I-ORG I-ORG I-ORG O I-LOC IOB: B-PER I-PER O O B-ORG I-ORG I-ORG I-ORG O B-LOC IOE: I-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O E-LOC IOBES: B-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O S-LOC There are three chunk types(named entity types) including PER(person), ORG(organization) and LOC(LOCATION), and we can see that the labels have the form -. Since the calculations actually use label ids rather than labels, extra attention should be paid when mapping labels to ids to make CheckEvalOp work. The key point is that the listed equations are satisfied by ids. tag_type = label % num_tag_type chunk_type = label / num_tag_type where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type` is the num of chunk types, and `tag_type` get its value from the following table. Scheme Begin Inside End Single plain 0 - - - IOB 0 1 - - IOE - 0 1 - IOBES 0 1 2 3 Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG, PER and LOC. To satisfy the above equations, the label map can be like this: B-ORG 0 I-ORG 1 B-PER 2 I-PER 3 B-LOC 4 I-LOC 5 O 6 It’s not hard to verify the equations noting that the num of chunk types is 3 and the num of tag types in IOB scheme is 2. For example, the label id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of I-LOC is 2, which consistent with the results from the equations. )DOC"); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(chunk_eval, ops::ChunkEvalOp, ops::ChunkEvalOpMaker); REGISTER_OP_CPU_KERNEL(chunk_eval, ops::ChunkEvalKernel);