// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "gtest/gtest.h" #include "paddle/fluid/operators/math/math_function.h" TEST(math_function, notrans_mul_trans) { paddle::framework::Tensor input1; paddle::framework::Tensor input1_gpu; paddle::framework::Tensor input2_gpu; paddle::framework::Tensor out_gpu; paddle::framework::Tensor out; auto* cpu_place = new paddle::platform::CPUPlace(); float* input1_ptr = input1.mutable_data({2, 3}, *cpu_place); float arr[6] = {0, 1, 2, 3, 4, 5}; memcpy(input1_ptr, arr, 6 * sizeof(float)); auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); paddle::framework::TensorCopy(input1, *gpu_place, context, &input1_gpu); paddle::framework::TensorCopy(input1, *gpu_place, context, &input2_gpu); out_gpu.mutable_data({2, 2}, *gpu_place); paddle::operators::math::matmul( context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0); paddle::framework::TensorCopy(out_gpu, *cpu_place, context, &out); float* out_ptr = out.data(); context.Wait(); EXPECT_EQ(out_ptr[0], 5); EXPECT_EQ(out_ptr[1], 14); EXPECT_EQ(out_ptr[2], 14); EXPECT_EQ(out_ptr[3], 50); delete gpu_place; } TEST(math_function, trans_mul_notrans) { paddle::framework::Tensor input1; paddle::framework::Tensor input1_gpu; paddle::framework::Tensor input2_gpu; paddle::framework::Tensor out_gpu; paddle::framework::Tensor out; auto* cpu_place = new paddle::platform::CPUPlace(); float* input1_ptr = input1.mutable_data({2, 3}, *cpu_place); float arr[6] = {0, 1, 2, 3, 4, 5}; memcpy(input1_ptr, arr, 6 * sizeof(float)); auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); paddle::framework::TensorCopy(input1, *gpu_place, context, &input1_gpu); paddle::framework::TensorCopy(input1, *gpu_place, context, &input2_gpu); out_gpu.mutable_data({3, 3}, *gpu_place); paddle::operators::math::matmul( context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0); paddle::framework::TensorCopy(out_gpu, *cpu_place, context, &out); float* out_ptr = out.data(); context.Wait(); EXPECT_EQ(out_ptr[0], 9); EXPECT_EQ(out_ptr[1], 12); EXPECT_EQ(out_ptr[2], 15); EXPECT_EQ(out_ptr[3], 12); EXPECT_EQ(out_ptr[4], 17); EXPECT_EQ(out_ptr[5], 22); EXPECT_EQ(out_ptr[6], 15); EXPECT_EQ(out_ptr[7], 22); EXPECT_EQ(out_ptr[8], 29); delete gpu_place; } TEST(math_function, gemm_notrans_cublas) { paddle::framework::Tensor input1; paddle::framework::Tensor input2; paddle::framework::Tensor input3; paddle::framework::Tensor input1_gpu; paddle::framework::Tensor input2_gpu; paddle::framework::Tensor input3_gpu; int m = 2; int n = 3; int k = 3; auto* cpu_place = new paddle::platform::CPUPlace(); float* input1_ptr = input1.mutable_data({2, 3}, *cpu_place); float arr1[6] = {0, 1, 2, 3, 4, 5}; memcpy(input1_ptr, arr1, 6 * sizeof(float)); float* input2_ptr = input2.mutable_data({3, 4}, *cpu_place); float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; memcpy(input2_ptr, arr2, 12 * sizeof(float)); float* input3_ptr = input3.mutable_data({2, 4}, *cpu_place); float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7}; memcpy(input3_ptr, arr3, 8 * sizeof(float)); auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); paddle::framework::TensorCopy(input1, *gpu_place, context, &input1_gpu); paddle::framework::TensorCopy(input2, *gpu_place, context, &input2_gpu); paddle::framework::TensorCopy(input3, *gpu_place, context, &input3_gpu); float* a = input1_gpu.data(); float* b = input2_gpu.data(); float* c = input3_gpu.mutable_data(*gpu_place); paddle::operators::math::gemm( context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4); paddle::framework::TensorCopy(input3_gpu, *cpu_place, context, &input3); // numpy code: // a = np.arange(6).reshape(2, 3) // b = np.arange(12).reshape(3, 4)[:, 1:] // c = np.arange(8).reshape(2, 4)[:, 1:] // out = np.arange(8).reshape(2, 4) // out[:, 1:] = np.dot(a, b) + c context.Wait(); EXPECT_EQ(input3_ptr[0], 0); EXPECT_EQ(input3_ptr[1], 24); EXPECT_EQ(input3_ptr[2], 28); EXPECT_EQ(input3_ptr[3], 32); EXPECT_EQ(input3_ptr[4], 4); EXPECT_EQ(input3_ptr[5], 73); EXPECT_EQ(input3_ptr[6], 86); EXPECT_EQ(input3_ptr[7], 99); delete gpu_place; } TEST(math_function, gemm_trans_cublas) { paddle::framework::Tensor input1; paddle::framework::Tensor input2; paddle::framework::Tensor input3; paddle::framework::Tensor input1_gpu; paddle::framework::Tensor input2_gpu; paddle::framework::Tensor input3_gpu; int m = 2; int n = 3; int k = 3; auto* cpu_place = new paddle::platform::CPUPlace(); float* input1_ptr = input1.mutable_data({2, 3}, *cpu_place); float arr1[6] = {0, 1, 2, 3, 4, 5}; memcpy(input1_ptr, arr1, 6 * sizeof(float)); float* input2_ptr = input2.mutable_data({4, 3}, *cpu_place); float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11}; memcpy(input2_ptr, arr2, 12 * sizeof(float)); float* input3_ptr = input3.mutable_data({2, 4}, *cpu_place); float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7}; memcpy(input3_ptr, arr3, 8 * sizeof(float)); auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::platform::CUDADeviceContext context(*gpu_place); paddle::framework::TensorCopy(input1, *gpu_place, context, &input1_gpu); paddle::framework::TensorCopy(input2, *gpu_place, context, &input2_gpu); paddle::framework::TensorCopy(input3, *gpu_place, context, &input3_gpu); float* a = input1_gpu.data(); float* b = input2_gpu.data(); float* c = input3_gpu.mutable_data(*gpu_place); paddle::operators::math::gemm( context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4); paddle::framework::TensorCopy(input3_gpu, *cpu_place, context, &input3); context.Wait(); EXPECT_EQ(input3_ptr[0], 0); EXPECT_EQ(input3_ptr[1], 24); EXPECT_EQ(input3_ptr[2], 28); EXPECT_EQ(input3_ptr[3], 32); EXPECT_EQ(input3_ptr[4], 4); EXPECT_EQ(input3_ptr[5], 73); EXPECT_EQ(input3_ptr[6], 86); EXPECT_EQ(input3_ptr[7], 99); delete gpu_place; } template void GemvTest(int m, int n, bool trans) { paddle::framework::Tensor mat_a; paddle::framework::Tensor vec_b; paddle::framework::Tensor vec_c; auto* cpu_place = new paddle::platform::CPUPlace(); T* data_a = mat_a.mutable_data({m, n}, *cpu_place); T* data_b = vec_b.mutable_data({trans ? m : n}, *cpu_place); T* data_c = vec_c.mutable_data({trans ? n : m}, *cpu_place); auto* gpu_place = new paddle::platform::CUDAPlace(0); paddle::framework::Tensor g_mat_a; paddle::framework::Tensor g_vec_b; paddle::framework::Tensor g_vec_c; T* g_data_a = g_mat_a.mutable_data(mat_a.dims(), *gpu_place); T* g_data_b = g_vec_b.mutable_data(vec_b.dims(), *gpu_place); T* g_data_c = g_vec_c.mutable_data(vec_c.dims(), *gpu_place); for (int i = 0; i < mat_a.numel(); ++i) { data_a[i] = static_cast(i); } for (int i = 0; i < vec_b.numel(); ++i) { data_b[i] = static_cast(i); } paddle::platform::CUDADeviceContext context(*gpu_place); paddle::framework::TensorCopy(mat_a, *gpu_place, context, &g_mat_a); paddle::framework::TensorCopy(vec_b, *gpu_place, context, &g_vec_b); paddle::operators::math::gemv( context, trans, static_cast(m), static_cast(n), 1., g_data_a, g_data_b, 0., g_data_c); paddle::framework::TensorCopy(g_vec_c, paddle::platform::CPUPlace(), context, &vec_c); if (!trans) { for (int i = 0; i < m; ++i) { T sum = 0.0; for (int j = 0; j < n; ++j) { sum += data_a[i * n + j] * data_b[j]; } ASSERT_FLOAT_EQ(data_c[i], sum); } } else { for (int i = 0; i < n; ++i) { T sum = 0.0; for (int j = 0; j < m; ++j) { sum += data_a[j * n + i] * data_b[j]; } ASSERT_FLOAT_EQ(data_c[i], sum); } } } TEST(math_function, gemv) { GemvTest(3, 13, false); GemvTest(3, 13, false); GemvTest(3, 13, true); GemvTest(3, 13, true); }