// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/infermeta/binary.h" namespace phi { template void FMaxKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void FMinKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void AddRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void AddKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out); template void SubtractRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void SubtractKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out); template void DivideRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void DivideKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out); template void MultiplyRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void MultiplyKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out); template void MaximumRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void MaximumKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out); template void MinimumRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void MinimumKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out); template void ModuloRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void ModuloKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out); template DenseTensor Add(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y) { DenseTensor dense_out; MetaTensor meta_out(&dense_out); ElementwiseInferMeta(x, y, &meta_out); AddKernel(dev_ctx, x, y, &dense_out); return dense_out; } template DenseTensor Subtract(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y) { DenseTensor dense_out; MetaTensor meta_out(&dense_out); ElementwiseInferMeta(x, y, &meta_out); SubtractKernel(dev_ctx, x, y, &dense_out); return dense_out; } template DenseTensor Divide(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y) { DenseTensor dense_out; MetaTensor meta_out(&dense_out); ElementwiseInferMeta(x, y, &meta_out); DivideKernel(dev_ctx, x, y, &dense_out); return dense_out; } template DenseTensor Multiply(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y) { DenseTensor dense_out; MetaTensor meta_out(&dense_out); ElementwiseInferMeta(x, y, &meta_out); MultiplyKernel(dev_ctx, x, y, &dense_out); return dense_out; } template DenseTensor Maximum(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y) { DenseTensor dense_out; MetaTensor meta_out(&dense_out); ElementwiseInferMeta(x, y, &meta_out); MaximumKernel(dev_ctx, x, y, &dense_out); return dense_out; } template DenseTensor Minimum(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y) { DenseTensor dense_out; MetaTensor meta_out(&dense_out); ElementwiseInferMeta(x, y, &meta_out); MinimumKernel(dev_ctx, x, y, &dense_out); return dense_out; } template DenseTensor Modulo(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y) { DenseTensor dense_out; MetaTensor meta_out(&dense_out); ElementwiseInferMeta(x, y, &meta_out); ModuloKernel(dev_ctx, x, y, &dense_out); return dense_out; } } // namespace phi