// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include #include #include "paddle/phi/core/dense_tensor.h" namespace infrt { namespace backends { namespace tensorrt { #define IS_TRT_VERSION_GE(version) \ ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \ NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version) #define IS_TRT_VERSION_LT(version) \ ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \ NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) < version) #define TRT_VERSION \ NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \ NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD inline nvinfer1::Dims VecToDims(const std::vector& vec) { int limit = static_cast(nvinfer1::Dims::MAX_DIMS); if (static_cast(vec.size()) > limit) { assert(false); } // Pick first nvinfer1::Dims::MAX_DIMS elements nvinfer1::Dims dims{std::min(static_cast(vec.size()), limit), {}}; std::copy_n(vec.begin(), dims.nbDims, std::begin(dims.d)); return dims; } template struct TrtDestroyer { void operator()(T* t) { t->destroy(); } }; template using TrtUniquePtr = std::unique_ptr>; class TrtLogger : public nvinfer1::ILogger { public: void log(nvinfer1::ILogger::Severity severity, const char* msg) noexcept override { switch (severity) { case Severity::kVERBOSE: VLOG(3) << msg; break; case Severity::kINFO: VLOG(2) << msg; break; case Severity::kWARNING: LOG(WARNING) << msg; break; case Severity::kINTERNAL_ERROR: case Severity::kERROR: LOG(ERROR) << msg; break; default: break; } } nvinfer1::ILogger& GetTrtLogger() noexcept { return *this; } ~TrtLogger() override = default; }; struct Binding { bool is_input{false}; nvinfer1::DataType data_type{nvinfer1::DataType::kFLOAT}; ::phi::DenseTensor* buffer{nullptr}; std::string name; }; class Bindings { public: Bindings() = default; void AddBinding(int32_t b, const std::string& name, bool is_input, ::phi::DenseTensor* buffer, nvinfer1::DataType data_type) { while (bindings_.size() <= static_cast(b)) { bindings_.emplace_back(); } names_[name] = b; bindings_[b].buffer = buffer; bindings_[b].is_input = is_input; bindings_[b].data_type = data_type; bindings_[b].name = name; } std::vector GetInputBindings() { return GetBindings([](const Binding& b) -> bool { return b.is_input; }); } std::vector GetOutputBindings() { return GetBindings([](const Binding& b) -> bool { return !b.is_input; }); } std::vector GetBindings() { return GetBindings([](const Binding& b) -> bool { return true; }); } std::vector GetBindings( std::function predicate) { std::vector bindings; for (const auto& b : bindings_) { if (predicate(b)) { bindings.push_back(b); } } return bindings; } private: std::unordered_map names_; std::vector bindings_; }; } // namespace tensorrt } // namespace backends } // namespace infrt