# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import errno import warnings import six import logging import pickle from functools import reduce import numpy as np import paddle import paddle.reader from paddle.reader import * from paddle.fluid import layers from paddle.fluid.executor import Executor, global_scope from paddle.fluid.evaluator import Evaluator from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard from paddle.fluid.compiler import CompiledProgram from paddle.fluid.log_helper import get_logger from . import reader from .reader import * from . import core from .. import compat as cpt batch = paddle.batch __all__ = [ 'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params', 'load_persistables', 'save_inference_model', 'load_inference_model', 'batch', 'save', 'load' ] + reader.__all__ + paddle.reader.__all__ _logger = get_logger( __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s') def is_parameter(var): """ Check whether the given variable is an instance of Parameter. Args: var(Variable): The variable to be checked. Returns: bool: True if the given `var` is an instance of Parameter, False if not. Examples: .. code-block:: python import paddle.fluid as fluid param = fluid.default_main_program().global_block().var('fc.w') res = fluid.io.is_parameter(param) """ return isinstance(var, Parameter) def is_persistable(var): """ Check whether the given variable is persistable. Args: var(Variable): The variable to be checked. Returns: bool: True if the given `var` is persistable False if not. Examples: .. code-block:: python import paddle.fluid as fluid param = fluid.default_main_program().global_block().var('fc.b') res = fluid.io.is_persistable(param) """ if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \ var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \ var.desc.type() == core.VarDesc.VarType.READER: return False return var.persistable def is_belong_to_optimizer(var): return var.belong_to_optimizer def _clone_var_in_block_(block, var): assert isinstance(var, Variable) if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR: return block.create_var( name=var.name, shape=var.shape, dtype=var.dtype, type=var.type, lod_level=var.lod_level, persistable=True) else: return block.create_var( name=var.name, shape=var.shape, dtype=var.dtype, type=var.type, persistable=True) def _get_valid_program(main_program): if main_program is None: main_program = default_main_program() elif isinstance(main_program, CompiledProgram): main_program = main_program._program if main_program is None: raise TypeError("program should be as Program type or None") warnings.warn( "The input is a CompiledProgram, this is not recommended.") if not isinstance(main_program, Program): raise TypeError("program should be as Program type or None") return main_program def save_vars(executor, dirname, main_program=None, vars=None, predicate=None, filename=None): """ This API saves specific variables in the `Program` to files. There are two ways to specify the variables to be saved: set variables in a list and assign it to the `vars`, or use the `predicate` function to select variables that make `predicate(variable) == True`. The first way has a higher priority. The `dirname` is used to specify the folder where to save variables. If you prefer to save variables in separate files in the `dirname` floder, do not set `filename`. If you prefer to save all variables in a single file, use `filename` to specify it. Args: executor(Executor): The executor to run for saving variables. dirname(str): The folder where to save variables. main_program(Program, optional): The program whose variables will be saved. If it is None, the default main program will be used automatically. Default: None vars(list[Variable], optional): The list contains all variables to be saved. Default: None predicate(function, optional): The function selects the variables that make `predicate(variable) == True`. Default: None filename(str, optional): If you prefer to save all variables in a single file, use `filename` to specify it. Otherwise, let `filename` be None. Default: None Returns: None Raises: TypeError: If `main_program` is not an instance of Program nor None. Examples: .. code-block:: python import paddle.fluid as fluid main_prog = fluid.Program() startup_prog = fluid.Program() with fluid.program_guard(main_prog, startup_prog): data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False) w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w') b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b') hidden_w = fluid.layers.matmul(x=data, y=w) hidden_b = fluid.layers.elementwise_add(hidden_w, b) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) # The first usage: use `vars` to set the saved variables. var_list = [w, b] path = "./my_paddle_vars" fluid.io.save_vars(executor=exe, dirname=path, vars=var_list, filename="vars_file") # w and b will be save in a file named "var_file". # The second usage: use `predicate` to select the saved variable. def name_has_fc(var): res = "fc" in var.name return res param_path = "./my_paddle_model" fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc) # all variables whose names contain "fc " are saved. """ save_dirname = os.path.normpath(dirname) main_program = _get_valid_program(main_program) if vars is None: save_vars( executor, main_program=main_program, dirname=save_dirname, vars=list(filter(predicate, main_program.list_vars())), filename=filename) else: # give warning when there is no var in model if len(list(vars)) == 0: warnings.warn( "no variable in your model, please ensure there are any variables in your model to save" ) return None save_program = Program() save_block = save_program.global_block() save_var_map = {} for each_var in vars: # NOTE: don't save the variable which type is RAW if each_var.type == core.VarDesc.VarType.RAW: continue new_var = _clone_var_in_block_(save_block, each_var) if filename is None: save_file_path = os.path.join(save_dirname, new_var.name) save_file_path = os.path.normpath(save_file_path) save_block.append_op( type='save', inputs={'X': [new_var]}, outputs={}, attrs={'file_path': save_file_path}) else: save_var_map[new_var.name] = new_var if filename is not None: save_var_list = [] for name in sorted(save_var_map.keys()): save_var_list.append(save_var_map[name]) save_block.append_op( type='save_combine', inputs={'X': save_var_list}, outputs={}, attrs={'file_path': os.path.join(save_dirname, filename)}) executor.run(save_program) def save_params(executor, dirname, main_program=None, filename=None): """ This operator saves all parameters from the :code:`main_program` to the folder :code:`dirname` or file :code:`filename`. You can refer to :ref:`api_guide_model_save_reader_en` for more details. Use the :code:`dirname` to specify the saving folder. If you would like to save parameters in separate files, set :code:`filename` None; if you would like to save all parameters in a single file, use :code:`filename` to specify the file name. Note: Some variables are not Parameter while they are necessary for training, such as learning rate, global step, etc. So you can NOT save and continue your training just by :ref:`api_fluid_io_save_params` and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables` and :ref:`api_fluid_io_load_persistables` instead. If you want to save your model for the inference, please use the :ref:`api_fluid_io_save_inference_model`. You can refer to :ref:`api_guide_model_save_reader_en` for more details. Args: executor(Executor): The executor to run for saving parameters, You can refer to :ref:`api_guide_executor_en`. dirname(str): The saving directory path. main_program(Program, optional): The program whose parameters will be saved. You can refer to :ref:`api_guide_Program_en` for more details. If it is None, the default main program will be used. Default: None filename(str, optional): The file to save all parameters. If you prefer to save parameters in different files, set it to None. Default: None Returns: None Examples: .. code-block:: python import paddle.fluid as fluid params_path = "./my_paddle_model" image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32') label = fluid.data(name='label', shape=[None, 1], dtype='int64') feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace()) predict = fluid.layers.fc(input=image, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=predict, label=label) avg_loss = fluid.layers.mean(loss) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) fluid.io.save_params(executor=exe, dirname=params_path) # The parameters weights and bias of the fc layer in the network are going to # be saved in different files in the path "./my_paddle_model" """ save_vars( executor, dirname=dirname, main_program=main_program, vars=None, predicate=is_parameter, filename=filename) def _save_distributed_persistables(executor, dirname, main_program): """ save_persistables for distributed training. the method will do things listed below: 1.save part of persistable variables on trainer. 2.receive "remote prefetch variables" from parameter servers and merge them. 3.save "distributed lookup table" on parameter servers. 4.receive "optimizer variables" from parameter servers and merge them. Args: executor(Executor): The executor to run for saving parameters. dirname(str): The saving directory path. main_program(Program): The program whose parameters will be saved. the main_program must be the trainer_program get after transpiler. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid exe = fluid.Executor(fluid.CPUPlace()) param_path = "./my_paddle_model" t = distribute_transpiler.DistributeTranspiler() t.transpile(...) train_program = t.get_trainer_program() _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program) """ def __save_remote_params(executor, dirname, remote_params_map): """ recive params on pserver through rpc. if the params are be sliced, will concat them to one, then save it. """ if not remote_params_map: return prog = Program() block = prog.global_block() # recv optimize vars from pserver for name, remote_params in remote_params_map.items(): origin_var = None is_slice = False slice_vars = [0] * len(remote_params) slice_var_names = [""] * len(remote_params) endpoints = [""] * len(remote_params) for idx, optimizer in enumerate(remote_params): origin = optimizer.origin slice = optimizer.slice is_slice = optimizer.is_slice block_id = optimizer.block_id endpoint = optimizer.endpoint if idx == 0: origin_var = block.create_var( name=origin.name, type=origin.type, shape=origin.shape, dtype=origin.dtype, persistable=True) slice_var = block.create_var( name="{}.slice.{}".format(slice.name, idx), type=slice.type, shape=slice.shape, dtype=slice.dtype, persistable=True) index = block_id if is_slice else idx slice_vars[index] = slice_var slice_var_names[index] = slice.name endpoints[index] = endpoint if is_slice: block.append_op( type='recv', inputs={"X": []}, outputs={"Out": slice_vars}, attrs={ "epmap": endpoints, "with_barrier": False, "varnames": slice_var_names, "sync_mode": True }) block.append_op( type='concat', inputs={'X': slice_vars}, outputs={'Out': origin_var}, attrs={}) else: block.append_op( type='recv', inputs={"X": []}, outputs={"Out": [origin_var]}, attrs={ "epmap": endpoints[:1], "with_barrier": False, "varnames": slice_var_names, "sync_mode": True }) block.append_op( type='save', inputs={'X': [origin_var]}, outputs={}, attrs={'file_path': os.path.join(dirname, origin_var.name)}) block.append_op(type='delete_var', inputs={'X': slice_vars}) executor.run(prog) def __save_distributed_lookup_tables(executor, dirname, distributed_lookup_table, endpoints): """ because the distributed lookup table may too huge to merge and save at one place, it will be saved at parameter server independent respectively. the save directory is dirname/"__lookup_table__". """ prog = Program() block = prog.global_block() # if there is lookup table, the trainer 0 will notify all pserver to save. lookup_table_filename = os.path.join(dirname, "__lookup_table__") attrs = {} attrs['epmap'] = endpoints attrs['dir'] = lookup_table_filename attrs['lookup_table'] = distributed_lookup_table block.append_op( type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs) executor.run(prog) def __exclude_vars(exclude_var_names=[]): def is_valid(var): if var.name in exclude_var_names: return False if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \ var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \ var.desc.type() == core.VarDesc.VarType.READER: return False return var.persistable return is_valid if not isinstance(main_program, Program): raise TypeError("'main_program' should be an instance of Program.") if not main_program._is_distributed: raise ValueError( "'_save_distributed_persistables' just be designed for distributed training." ) remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes( ["Optimizer", "RemotePrefetch"], groupby=True) exclude_var_names = [] if remote_params_map: exclude_var_names.extend(remote_params_map.keys()) if main_program._distributed_lookup_table: if isinstance(main_program._distributed_lookup_table, list): exclude_var_names.extend(main_program._distributed_lookup_table) else: exclude_var_names.append(main_program._distributed_lookup_table) local_vars = list( filter(__exclude_vars(exclude_var_names), main_program.list_vars())) save_vars( executor, main_program=main_program, dirname=dirname, vars=local_vars) if main_program._is_chief: if remote_params_map: __save_remote_params(executor, dirname, remote_params_map) if main_program._distributed_lookup_table: __save_distributed_lookup_tables( executor, dirname, main_program._distributed_lookup_table, main_program._endpoints) def save_persistables(executor, dirname, main_program=None, filename=None): """ This operator saves all persistable variables from :code:`main_program` to the folder :code:`dirname` or file :code:`filename`. You can refer to :ref:`api_guide_model_save_reader_en` for more details. And then saves these persistables variables to the folder :code:`dirname` or file :code:`filename`. The :code:`dirname` is used to specify the folder where persistable variables are going to be saved. If you would like to save variables in separate files, set :code:`filename` None; if you would like to save all variables in a single file, use :code:`filename` to specify the file name. Args: executor(Executor): The executor to run for saving persistable variables. You can refer to :ref:`api_guide_executor_en` for more details. dirname(str): The saving directory path. main_program(Program, optional): The program whose persistbale variables will be saved. You can refer to :ref:`api_guide_Program_en` for more details. If it is None, the default main program will be used. Default: None. filename(str, optional): The file to save all variables. If you prefer to save variables in different files, set it to None. Default: None. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid dir_path = "./my_paddle_model" file_name = "persistables" image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32') label = fluid.data(name='label', shape=[None, 1], dtype='int64') feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace()) predict = fluid.layers.fc(input=image, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=predict, label=label) avg_loss = fluid.layers.mean(loss) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name) # The persistables variables weights and bias in the fc layer of the network # are going to be saved in the same file named "persistables" in the path # "./my_paddle_model" """ if main_program and main_program._is_distributed: _save_distributed_persistables( executor, dirname=dirname, main_program=main_program) else: save_vars( executor, dirname=dirname, main_program=main_program, vars=None, predicate=is_persistable, filename=filename) def load_vars(executor, dirname, main_program=None, vars=None, predicate=None, filename=None): """ This API loads variables from files by executor. There are two ways to specify the variables to be loaded: the first way, set variables in a list and assign it to the `vars`; the second way, use the `predicate` function to select variables that make `predicate(variable) == True`. The first way has a higher priority. The `dirname` is used to specify the folder where to load variables. If variables were saved in separate files in the folder `dirname`, set `filename` None. If all variables were saved in a single file, use `filename` to specify it. Args: executor(Executor): The executor to run for loading variables. dirname(str): The folder where to load the variables. main_program(Program, optional): The program whose variables will be loaded. If it is None, the default main program will be used automatically. Default: None vars(list[Variable], optional): The list that contains all variables to be loaded. Default: None predicate(function, optional): The function selects variables that make `predicate(variable) == True`. Default: None filename(str, optional): The file which saved all required variables. If variables were saved in separate files, set it to be None. Default: None Returns: None Raises: TypeError: If `main_program` is not an instance of Program nor None. Examples: .. code-block:: python import paddle.fluid as fluid main_prog = fluid.Program() startup_prog = fluid.Program() with fluid.program_guard(main_prog, startup_prog): data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False) w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w') b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b') hidden_w = fluid.layers.matmul(x=data, y=w) hidden_b = fluid.layers.elementwise_add(hidden_w, b) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) # The first usage: using `vars` to specify the variables. path = "./my_paddle_vars" var_list = [w, b] fluid.io.save_vars(executor=exe, dirname=path, vars=var_list, filename="vars_file") fluid.io.load_vars(executor=exe, dirname=path, vars=var_list, filename="vars_file") # w and b will be loaded, and they are supposed to # be saved in the same file named 'var_file' in the path "./my_paddle_vars". # The second usage: using the `predicate` function to select variables param_path = "./my_paddle_model" def name_has_fc(var): res = "fc" in var.name return res fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate=name_has_fc) fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate=name_has_fc) # Load All variables in the `main_program` whose name includes "fc". # And all the variables are supposed to be saved in separate files. """ load_dirname = os.path.normpath(dirname) if vars is None: if main_program is None: main_program = default_main_program() if not isinstance(main_program, Program): raise TypeError("program's type should be Program") load_vars( executor, dirname=load_dirname, main_program=main_program, vars=list(filter(predicate, main_program.list_vars())), filename=filename) else: load_prog = Program() load_block = load_prog.global_block() if main_program is None: main_program = default_main_program() if not isinstance(main_program, Program): raise TypeError("program should be as Program type or None") #save origin param shape orig_para_shape = {} load_var_map = {} for each_var in vars: assert isinstance(each_var, Variable) if each_var.type == core.VarDesc.VarType.RAW: continue if isinstance(each_var, Parameter): orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape( )) new_var = _clone_var_in_block_(load_block, each_var) if filename is None: load_block.append_op( type='load', inputs={}, outputs={'Out': [new_var]}, attrs={ 'file_path': os.path.join(load_dirname, new_var.name) }) else: load_var_map[new_var.name] = new_var if filename is not None: load_var_list = [] for name in sorted(load_var_map.keys()): load_var_list.append(load_var_map[name]) load_block.append_op( type='load_combine', inputs={}, outputs={"Out": load_var_list}, attrs={'file_path': os.path.join(load_dirname, filename)}) executor.run(load_prog) #check var shape for each_var in vars: if not isinstance(each_var, Parameter): continue var_temp = paddle.fluid.global_scope().find_var(each_var.name) assert var_temp != None, "can't not find var: " + each_var.name new_shape = (np.array(var_temp.get_tensor())).shape assert each_var.name in orig_para_shape, earch_var.name + "MUST in var list" orig_shape = orig_para_shape.get(each_var.name) if new_shape != orig_shape: raise RuntimeError( "Shape not matching: the Program requires a parameter with a shape of ({}), " "while the loaded parameter (namely [ {} ]) has a shape of ({}).". format(orig_shape, each_var.name, new_shape)) def load_params(executor, dirname, main_program=None, filename=None): """ This API filters out all parameters from the give ``main_program`` and then tries to load these parameters from the directory ``dirname`` or the file ``filename``. Use the ``dirname`` to specify the directory where parameters were saved. If parameters were saved in separate files under the directory `dirname`, set ``filename`` as None; if all parameters were saved in a single file, use ``filename`` to specify the file name. **Note**: Some variables are not Parameter while they are necessary for training, such as learning rate, global step, etc. So you cannot save and continue your training just by using :ref:`api_fluid_io_save_params` and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables` and :ref:`api_fluid_io_load_persistables` instead. If you want to load the pre-trained model structure and parameters for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can refer to :ref:`api_guide_model_save_reader_en` for more details. Args: executor(Executor): The executor used for loading parameters. See :ref:`api_guide_executor_en` for more details about it. dirname(str): The directory path. main_program(Program, optional): The program whose parameters will be loaded. If it is None, the ``default_main_program`` will be used automatically. See :ref:`api_guide_Program_en` for more about ``Program``. Default: None. filename(str, optional): The file which saved all parameters. If parameters were saved in separated files, set it to None. Default: None. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid exe = fluid.Executor(fluid.CPUPlace()) param_path = "./my_paddle_model" prog = fluid.default_main_program() fluid.io.load_params(executor=exe, dirname=param_path, main_program=None) """ load_vars( executor, dirname=dirname, main_program=main_program, predicate=is_parameter, filename=filename) def load_persistables(executor, dirname, main_program=None, filename=None): """ This API filters out all variables with ``persistable==True`` from the given ``main_program`` and then tries to load these variables from the directory ``dirnameme`` or the file ``filename``. Use the ``dirname`` to specify the directory where persistable variables (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables were saved in separate files, set ``filename`` as None; if all variables were saved in a single file, use ``filename`` to specify the file name. Args: executor(Executor): The executor used for loading persistable variables. See :ref:`api_guide_executor_en` for more details about it. dirname(str): The directory path. main_program(Program, optional): The program whose persistbale variables will be loaded. If it is None, the ``default_main_program`` will be used automatically. See :ref:`api_guide_Program_en` for more about ``Program``. Default: None. filename(str, optional): The file which saved all persistable variables. If variables were saved in separated files, set it to None. Default: None. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid exe = fluid.Executor(fluid.CPUPlace()) param_path = "./my_paddle_model" prog = fluid.default_main_program() fluid.io.load_persistables(executor=exe, dirname=param_path, main_program=None) """ if main_program and main_program._is_distributed: _load_distributed_persistables( executor, dirname=dirname, main_program=main_program) else: load_vars( executor, dirname=dirname, main_program=main_program, predicate=is_persistable, filename=filename) def _load_distributed_persistables(executor, dirname, main_program=None): """ customized load_persistables for distributed training. it should be used on parameter server, Args: executor(Executor): The executor to run for saving parameters. dirname(str): The load directory path. main_program(Program): The program whose parameters will be loaded. the main_program must be the pserver_program get after transpiler. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid exe = fluid.Executor(fluid.CPUPlace()) param_path = "./my_paddle_model" t = distribute_transpiler.DistributeTranspiler() t.transpile(...) pserver_prog = t.get_pserver_program(...) _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog) """ def __is_distributed_part_var(varname): trainer_idx = varname.find(".trainer_") block_idx = varname.find(".block") return trainer_idx or block_idx def __load_persistable_vars(executor, dirname, need_load_vars): load_prog = Program() load_block = load_prog.global_block() need_delete_vars = [] for param in need_load_vars: origin_var = param.origin slice_var = param.slice is_slice = param.is_slice offset = param.offset if is_slice: origin = load_block.create_var( name="{}.load".format(origin_var.name), type=origin_var.type, shape=origin_var.shape, dtype=origin_var.dtype, persistable=True) load_block.append_op( type='load', inputs={}, outputs={'Out': [origin]}, attrs={ 'file_path': os.path.join(dirname, origin_var.name) }) slice = load_block.create_var( name=slice_var.name, type=slice_var.type, shape=slice_var.shape, dtype=slice_var.dtype, persistable=True) dim1_flatten = 1 if len(slice.shape) >= 2: dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:]) start = int(offset / dim1_flatten) end = int(offset / dim1_flatten + slice.shape[0]) load_block.append_op( type="slice", inputs={'Input': origin}, outputs={'Out': slice}, attrs={'axes': [0], 'starts': [start], 'ends': [end]}) need_delete_vars.append(origin) else: origin = load_block.create_var( name="{}".format(origin_var.name), type=origin_var.type, shape=origin_var.shape, dtype=origin_var.dtype, persistable=True) load_block.append_op( type='load', inputs={}, outputs={'Out': [origin]}, attrs={ 'file_path': os.path.join(dirname, origin_var.name) }) load_block.append_op( type='delete_var', inputs={'X': need_delete_vars}, ) executor.run(load_prog) if not isinstance(main_program, Program): raise TypeError("'main_program' should be an instance of Program.") if not main_program._is_distributed: raise ValueError( "'_load_distributed_persistables' just be designed for distributed training." ) if not main_program._ps_endpoint: raise ValueError( "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile" ) need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep( main_program._ps_endpoint) __load_persistable_vars(executor, dirname, need_load_vars) def prepend_feed_ops(inference_program, feed_target_names, feed_holder_name='feed'): if len(feed_target_names) == 0: return global_block = inference_program.global_block() feed_var = global_block.create_var( name=feed_holder_name, type=core.VarDesc.VarType.FEED_MINIBATCH, persistable=True) for i, name in enumerate(feed_target_names): out = global_block.var(name) global_block._prepend_op( type='feed', inputs={'X': [feed_var]}, outputs={'Out': [out]}, attrs={'col': i}) def append_fetch_ops(inference_program, fetch_target_names, fetch_holder_name='fetch'): global_block = inference_program.global_block() fetch_var = global_block.create_var( name=fetch_holder_name, type=core.VarDesc.VarType.FETCH_LIST, persistable=True) for i, name in enumerate(fetch_target_names): global_block.append_op( type='fetch', inputs={'X': [name]}, outputs={'Out': [fetch_var]}, attrs={'col': i}) def save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program=None, model_filename=None, params_filename=None, export_for_deployment=True, program_only=False): """ Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` . If you just want to save parameters of your trained model, please use the :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en` for more details. Note: The :code:`dirname` is used to specify the folder where inference model structure and parameters are going to be saved. If you would like to save params of Program in separate files, set `params_filename` None; if you would like to save all params of Program in a single file, use `params_filename` to specify the file name. Args: dirname(str): The directory path to save the inference model. feeded_var_names(list[str]): list of string. Names of variables that need to be feeded data during inference. target_vars(list[Variable]): list of Variable. Variables from which we can get inference results. executor(Executor): The executor that saves the inference model. You can refer to :ref:`api_guide_executor_en` for more details. main_program(Program, optional): The original program, which will be pruned to build the inference model. If is setted None, the global default :code:`_main_program_` will be used. Default: None. model_filename(str, optional): The name of file to save the inference program itself. If is setted None, a default filename :code:`__model__` will be used. params_filename(str, optional): The name of file to save all related parameters. If it is setted None, parameters will be saved in separate files . export_for_deployment(bool): If True, programs are modified to only support direct inference deployment. Otherwise, more information will be stored for flexible optimization and re-training. Currently, only True is supported. Default: True. program_only(bool, optional): If True, It will save inference program only, and do not save params of Program. Default: False. Returns: The fetch variables' name list Return Type: list Raises: ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown. ValueError: If `target_vars` is not a list of Variable, an exception is thrown. Examples: .. code-block:: python import paddle.fluid as fluid path = "./infer_model" # User defined network, here a softmax regresssion example image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32') label = fluid.data(name='label', shape=[None, 1], dtype='int64') feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace()) predict = fluid.layers.fc(input=image, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=predict, label=label) avg_loss = fluid.layers.mean(loss) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) # Feed data and train process # Save inference model. Note we don't save label and loss in this example fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'], target_vars=[predict], executor=exe) # In this example, the save_inference_mode inference will prune the default # main program according to the network's input node (img) and output node(predict). # The pruned inference program is going to be saved in the "./infer_model/__model__" # and parameters are going to be saved in separate files under folder # "./infer_model". """ if isinstance(feeded_var_names, six.string_types): feeded_var_names = [feeded_var_names] elif export_for_deployment: if len(feeded_var_names) > 0: # TODO(paddle-dev): polish these code blocks if not (bool(feeded_var_names) and all( isinstance(name, six.string_types) for name in feeded_var_names)): raise ValueError("'feed_var_names' should be a list of str.") if isinstance(target_vars, Variable): target_vars = [target_vars] elif export_for_deployment: if not (bool(target_vars) and all(isinstance(var, Variable) for var in target_vars)): raise ValueError("'target_vars' should be a list of Variable.") main_program = _get_valid_program(main_program) # remind user to set auc_states to zeros if the program contains auc op all_ops = main_program.global_block().ops for op in all_ops: if op.type == 'auc': warnings.warn( "please ensure that you have set the auc states to zeros before saving inference model" ) break # fix the bug that the activation op's output as target will be pruned. # will affect the inference performance. # TODO(Superjomn) add an IR pass to remove 1-scale op. with program_guard(main_program): uniq_target_vars = [] for i, var in enumerate(target_vars): if isinstance(var, Variable): var = layers.scale( var, 1., name="save_infer_model/scale_{}".format(i)) uniq_target_vars.append(var) target_vars = uniq_target_vars target_var_name_list = [var.name for var in target_vars] # when a pserver and a trainer running on the same machine, mkdir may conflict save_dirname = dirname try: save_dirname = os.path.normpath(dirname) os.makedirs(save_dirname) except OSError as e: if e.errno != errno.EEXIST: raise if model_filename is not None: model_basename = os.path.basename(model_filename) else: model_basename = "__model__" model_basename = os.path.join(save_dirname, model_basename) # When export_for_deployment is true, we modify the program online so that # it can only be loaded for inference directly. If it's false, the whole # original program and related meta are saved so that future usage can be # more flexible. origin_program = main_program.clone() if export_for_deployment: main_program = main_program.clone() global_block = main_program.global_block() need_to_remove_op_index = [] for i, op in enumerate(global_block.ops): op.desc.set_is_target(False) if op.type == "feed" or op.type == "fetch": need_to_remove_op_index.append(i) for index in need_to_remove_op_index[::-1]: global_block._remove_op(index) main_program.desc.flush() main_program = main_program._prune_with_input( feeded_var_names=feeded_var_names, targets=target_vars) main_program = main_program._inference_optimize(prune_read_op=True) fetch_var_names = [v.name for v in target_vars] prepend_feed_ops(main_program, feeded_var_names) append_fetch_ops(main_program, fetch_var_names) main_program.desc._set_version() paddle.fluid.core.save_op_compatible_info(main_program.desc) with open(model_basename, "wb") as f: f.write(main_program.desc.serialize_to_string()) else: # TODO(panyx0718): Save more information so that it can also be used # for training and more flexible post-processing. with open(model_basename + ".main_program", "wb") as f: f.write(main_program.desc.serialize_to_string()) if program_only: warnings.warn( "save_inference_model specified the param `program_only` to True, It will not save params of Program." ) return target_var_name_list main_program._copy_dist_param_info_from(origin_program) if params_filename is not None: params_filename = os.path.basename(params_filename) save_persistables(executor, save_dirname, main_program, params_filename) return target_var_name_list def load_inference_model(dirname, executor, model_filename=None, params_filename=None, pserver_endpoints=None): """ Load the inference model from a given directory. By this API, you can get the model structure(Inference Program) and model parameters. If you just want to load parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API. You can refer to :ref:`api_guide_model_save_reader_en` for more details. Args: dirname(str): The given directory path. executor(Executor): The executor to run for loading inference model. See :ref:`api_guide_executor_en` for more details about it. model_filename(str, optional): The name of file to load the inference program. If it is None, the default filename ``__model__`` will be used. Default: ``None``. params_filename(str, optional): The name of file to load all parameters. It is only used for the case that all parameters were saved in a single binary file. If parameters were saved in separate files, set it as ``None``. Default: ``None``. pserver_endpoints(list, optional): It is only needed by the distributed inference. If using a distributed look up table during the training, this table is also needed by the inference process. Its value is a list of pserver endpoints. Returns: list: The return of this API is a list with three elements: (program, feed_target_names, fetch_targets). The `program` is a ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference. The `feed_target_names` is a list of ``str``, which contains names of variables that need to feed data in the inference program. The `fetch_targets` is a list of ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which we can get inference results. Raises: ValueError: If `dirname` is not a existing directory. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np # Build the model main_prog = fluid.Program() startup_prog = fluid.Program() with fluid.program_guard(main_prog, startup_prog): data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False) w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32') b = fluid.layers.create_parameter(shape=[200], dtype='float32') hidden_w = fluid.layers.matmul(x=data, y=w) hidden_b = fluid.layers.elementwise_add(hidden_w, b) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) # Save the inference model path = "./infer_model" fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'], target_vars=[hidden_b], executor=exe, main_program=main_prog) # Demo one. Not need to set the distributed look up table, because the # training doesn't use a distributed look up table. [inference_program, feed_target_names, fetch_targets] = ( fluid.io.load_inference_model(dirname=path, executor=exe)) tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32) results = exe.run(inference_program, feed={feed_target_names[0]: tensor_img}, fetch_list=fetch_targets) # Demo two. If the training uses a distributed look up table, the pserver # endpoints list should be supported when loading the inference model. # The below is just an example. endpoints = ["127.0.0.1:2023","127.0.0.1:2024"] [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = ( fluid.io.load_inference_model(dirname=path, executor=exe, pserver_endpoints=endpoints)) # In this example, the inference program was saved in the file # "./infer_model/__model__" and parameters were saved in # separate files under the directory "./infer_model". # By the inference program, feed_target_names and # fetch_targets, we can use an executor to run the inference # program for getting the inference result. """ load_dirname = os.path.normpath(dirname) if not os.path.isdir(load_dirname): raise ValueError("There is no directory named '%s'", dirname) if model_filename is not None: model_filename = os.path.basename(model_filename) else: model_filename = "__model__" model_filename = os.path.join(load_dirname, model_filename) if params_filename is not None: params_filename = os.path.basename(params_filename) with open(model_filename, "rb") as f: program_desc_str = f.read() program = Program.parse_from_string(program_desc_str) if not core._is_program_version_supported(program._version()): raise ValueError("Unsupported program version: %d\n" % program._version()) # Binary data also need versioning. load_persistables(executor, load_dirname, program, params_filename) if pserver_endpoints: program = _endpoints_replacement(program, pserver_endpoints) feed_target_names = program.desc.get_feed_target_names() fetch_target_names = program.desc.get_fetch_target_names() fetch_targets = [ program.global_block().var(name) for name in fetch_target_names ] return [program, feed_target_names, fetch_targets] def _endpoints_replacement(program, endpoints): ENDPOINT_MAP = "epmap" for op in program.global_block().ops: if op.has_attr(ENDPOINT_MAP): op.set_attr(ENDPOINT_MAP, endpoints) program._sync_with_cpp() return program def get_parameter_value(para, executor): """ Get the LoDTensor value of the given parameter. Args: para(Parameter): The parameter to get value from. executor(Executor): The executor to run for retrieving the value. Returns: numpy.array: The given parameter's values. Raises: AssertionError: If the `para` is not an instance of Parameter. Examples: .. code-block:: python import paddle.fluid as fluid exe = fluid.Executor(fluid.CPUPlace()) param = fluid.default_main_program().global_block().var('fc.w') p = fluid.io.get_parameter_value(param, exe) """ assert is_parameter(para) get_program = Program() block = get_program.global_block() new_var = _clone_var_in_block_(block, para) return executor.run(get_program, feed={}, fetch_list=[new_var])[0] def get_parameter_value_by_name(name, executor, program=None): """ Get the LoDTensor value of a certain parameter by its name. Args: name(str): The parameter's name. executor(Executor): The executor to run for retrieving the value. program(Program | None): The program where to find the parameter. If it's set to be None, the function will try to find the parameter in the default main program. Returns: numpy.array: The parameter's values. Raises: TypeError: If given `name` is not an instance of basestring. TypeError: If the parameter with the given name doesn't exist. AssertionError: If there is a varibale named `name` in the given program but it is not a Parameter. Examples: .. code-block:: python import paddle.fluid as fluid exe = fluid.Executor(fluid.CPUPlace()) p = fluid.io.get_parameter_value('fc.w', exe) """ if program is None: program = default_main_program() var = program.global_block().var(name) return get_parameter_value(var, executor) def _save_persistable_nodes(executor, dirname, graph): """ Save persistable nodes to the given directory by the executor. Args: executor(Executor): The executor to run for saving node values. dirname(str): The directory path. graph(IrGraph): All the required persistable nodes in the graph will be saved. """ persistable_node_names = set() persistable_nodes = [] all_persistable_nodes = graph.all_persistable_nodes() for node in all_persistable_nodes: name = cpt.to_text(node.name()) if name not in persistable_node_names: persistable_node_names.add(name) persistable_nodes.append(node) program = Program() var_list = [] for node in persistable_nodes: var_desc = node.var() if var_desc.type() == core.VarDesc.VarType.RAW or \ var_desc.type() == core.VarDesc.VarType.READER: continue var = program.global_block().create_var( name=var_desc.name(), shape=var_desc.shape(), dtype=var_desc.dtype(), type=var_desc.type(), lod_level=var_desc.lod_level(), persistable=var_desc.persistable()) var_list.append(var) save_vars(executor=executor, dirname=dirname, vars=var_list) def _load_persistable_nodes(executor, dirname, graph): """ Load persistable node values from the given directory by the executor. Args: executor(Executor): The executor to run for loading node values. dirname(str): The directory path. graph(IrGraph): All the required persistable nodes in the graph will be loaded. """ persistable_node_names = set() persistable_nodes = [] all_persistable_nodes = graph.all_persistable_nodes() for node in all_persistable_nodes: name = cpt.to_text(node.name()) if name not in persistable_node_names: persistable_node_names.add(name) persistable_nodes.append(node) program = Program() var_list = [] def _exist(var): return os.path.exists(os.path.join(dirname, var.name)) for node in persistable_nodes: var_desc = node.var() if var_desc.type() == core.VarDesc.VarType.RAW or \ var_desc.type() == core.VarDesc.VarType.READER: continue var = program.global_block().create_var( name=var_desc.name(), shape=var_desc.shape(), dtype=var_desc.dtype(), type=var_desc.type(), lod_level=var_desc.lod_level(), persistable=var_desc.persistable()) if _exist(var): var_list.append(var) else: _logger.warn("Cannot find the var %s!!!" % (node.name())) load_vars(executor=executor, dirname=dirname, vars=var_list) def save(program, model_path): """ This function save parameters, optimizer information and network description to model_path. The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams". The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated). The network description is the description of the program. It's only used for deployment. The description will save to a file with a suffix ".pdmodel". Args: program(Program) : The program to saved. model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised Returns: None Examples: .. code-block:: python import paddle.fluid as fluid prog = fluid.default_main_program() fluid.save( prog, "./temp") """ base_name = os.path.basename(model_path) assert base_name != "", \ "model_path MUST be format of dirname/filename [dirname\\filename in Window], Now filename is empty str" def get_tensor(var): t = global_scope().find_var(var.name).get_tensor() return np.array(t) parameter_list = list(filter(is_parameter, program.list_vars())) param_dict = {p.name: get_tensor(p) for p in parameter_list} with open(model_path + ".pdparams", 'wb') as f: pickle.dump(param_dict, f) optimizer_var_list = list( filter(is_belong_to_optimizer, program.list_vars())) opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list} with open(model_path + ".pdopt", 'wb') as f: pickle.dump(opt_dict, f) main_program = program.clone() program.desc.flush() main_program.desc._set_version() paddle.fluid.core.save_op_compatible_info(program.desc) with open(model_path + ".pdmodel", "wb") as f: f.write(program.desc.serialize_to_string()) def load(program, model_path): """ This function filter out parameters and optimizer information from program, and then get corresponding value from file. An exception will throw if shape or dtype of the parameters is not match between program and loaded file. NOTICE: This function MUST called after run start_up_program Args: program: The program to be load model_path: The file prefix store the program Returns: None Examples: .. code-block:: python import paddle.fluid as fluid prog = fluid.default_main_program() fluid.save( prog, "./temp") fluid.load( prog, "./temp") """ parameter_file_name = model_path + ".pdparams" assert os.path.exists(parameter_file_name), \ "Parameter file [{}] not exits".format(parameter_file_name) def set_var(var, ndarray): t = global_scope().find_var(var.name).get_tensor() p = t._place() if p.is_cpu_place(): place = paddle.fluid.CPUPlace() elif p.is_cuda_pinned_place(): place = paddle.fluid.CUDAPinnedPlace() else: p = paddle.fluid.core.Place() p.set_place(t._place()) place = paddle.fluid.CUDAPlace(p.gpu_device_id()) t.set(ndarray, place) parameter_list = list(filter(is_parameter, program.list_vars())) with open(parameter_file_name, 'rb') as f: load_dict = pickle.load(f) for v in parameter_list: assert v.name in load_dict, \ "Can not find [{}] in model file [{}]".format( v.name, parameter_file_name) set_var(v, load_dict[v.name]) optimizer_var_list = list( filter(is_belong_to_optimizer, program.list_vars())) if len(optimizer_var_list) > 0: opt_file_name = model_path + ".pdopt" assert os.path.exists(opt_file_name), \ "Optimizer file [{}] not exits".format(opt_file_name) with open(opt_file_name, 'rb') as f: load_dict = pickle.load(f) for v in optimizer_var_list: assert v.name in load_dict, \ "Can not find [{}] in model file [{}]".format( v.name, opt_file_name) set_var(v, load_dict[v.name])