# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import unittest import time import itertools import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.op import Operator from op_test import OpTest class BenchmarkSuite(OpTest): def timeit_function(self, callback, iters, *args, **kwargs): assert iters != 0, "Iters should >= 1" start = time.time() for i in range(iters): callback(*args, **kwargs) elapse = time.time() - start return elapse / iters def _assert_cpu_gpu_same(self, cpu_outs, gpu_outs, fetch_list, atol): for item_cpu_out, item_gpu_out, variable in zip(cpu_outs, gpu_outs, fetch_list): # the cpu version is baseline, expect gpu version keep same with cpu version. expect = item_cpu_out expect_t = np.array(item_cpu_out) actual = item_gpu_out actual_t = np.array(item_gpu_out) var_name = variable if isinstance(variable, str) else variable.name self.assertTrue( np.allclose( actual_t, expect_t, atol=atol), "Output (" + var_name + ") has diff" + str(actual_t) + "\n" + str(expect_t)) self.assertListEqual(actual.lod(), expect.lod(), "Output (" + var_name + ") has different lod") def _get_input_names(self): inputs = [] for name, value in list(self.inputs.items()): if isinstance(value, list): inputs.extend([sub_name for sub_name, _ in value]) inputs.append(name) return inputs def _get_output_names(self): outputs = [] for var_name, var in list(self.outputs.items()): if isinstance(var, list): for sub_var_name, sub_var in var: outputs.append(sub_var_name) else: outputs.append(var_name) if len(outputs) == 0: for out_name, out_dup in Operator.get_op_outputs(self.op_type): outputs.append(str(out_name)) return outputs def check_output_stability(self, atol=1e-8): places = self._get_places() if len(places) < 2: return cpu_outs, fetch_list = self._calc_output(places[0]) gpu_outs, _ = self._calc_output(places[1]) self._assert_cpu_gpu_same(cpu_outs, gpu_outs, fetch_list, atol) def timeit_output_with_place(self, place, iters): return self.timeit_function(self.calc_output, iters, place) def timeit_output(self, iters=100): places = self._get_places() elapses = [] for place in places: elapses.append(self.timeit_output_with_place(place, iters)) for place, elapse in zip(places, elapses): print("One pass of ({2}_op) at {0} cost {1}".format( str(place), elapse, self.op_type)) def timeit_grad_with_place(self, place, iters=100): inputs_to_check = self._get_input_names() output_names = self._get_output_names() return self.timeit_function( self._get_gradient, iters, inputs_to_check, place, output_names, no_grad_set=None) def timeit_grad(self, iters=100): places = self._get_places() elapses = [] for place in places: elapses.append(self.timeit_grad_with_place(place, iters)) for place, elapse in zip(places, elapses): print("One pass of ({2}_grad_op) at {0} cost {1}".format( str(place), elapse, self.op_type))