# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest from scipy import special import paddle from paddle.fluid import core np.random.seed(100) paddle.seed(100) def output_i0e(x): return special.i0e(x) def ref_i0e_grad(x, dout): eps = np.finfo(x.dtype).eps not_tiny = abs(x) > eps safe_x = np.where(not_tiny, x, eps) gradx = special.i1e(x) - np.sign(x) * output_i0e(safe_x) gradx = np.where(not_tiny, gradx, -1.0) return dout * gradx class TestI0eAPI(unittest.TestCase): DTYPE = "float64" DATA = [0, 1, 2, 3, 4, 5] def setUp(self): self.x = np.array(self.DATA).astype(self.DTYPE) self.place = [paddle.CPUPlace()] if core.is_compiled_with_cuda(): self.place.append(paddle.CUDAPlace(0)) def test_api_static(self): def run(place): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.static.data( name="x", shape=self.x.shape, dtype=self.DTYPE ) y = paddle.i0e(x) exe = paddle.static.Executor(place) res = exe.run( paddle.static.default_main_program(), feed={"x": self.x}, fetch_list=[y], ) out_ref = output_i0e(self.x) np.testing.assert_allclose(out_ref, res[0], rtol=1e-5) paddle.disable_static() for place in self.place: run(place) def test_api_dygraph(self): def run(place): paddle.disable_static(place) x = paddle.to_tensor(self.x) out = paddle.i0e(x) out_ref = output_i0e(self.x) np.testing.assert_allclose(out_ref, out.numpy(), rtol=1e-5) paddle.enable_static() for place in self.place: run(place) def test_empty_input_error(self): for place in self.place: paddle.disable_static(place) x = None self.assertRaises(ValueError, paddle.i0e, x) paddle.enable_static() class TestI0eFloat32Zero2EightCase(TestI0eAPI): DTYPE = "float32" DATA = [0, 1, 2, 3, 4, 5, 6, 7, 8] class TestI0eFloat32OverEightCase(TestI0eAPI): DTYPE = "float32" DATA = [9, 10, 11, 12] class TestI0eFloat64Zero2EightCase(TestI0eAPI): DTYPE = "float64" DATA = [0, 1, 2, 3, 4, 5, 6, 7, 8] class TestI0eFloat64OverEightCase(TestI0eAPI): DTYPE = "float64" DATA = [9, 10, 11, 12] class TestI0eOp(OpTest): def setUp(self) -> None: self.op_type = "i0e" self.python_api = paddle.i0e self.init_config() self.outputs = {"out": self.target} def init_config(self): self.dtype = np.float64 zero_case = np.zeros(1).astype(self.dtype) rand_case = np.random.randn(100).astype(self.dtype) one2eight_case = np.random.uniform(low=1, high=8, size=100).astype( self.dtype ) over_eight_case = np.random.uniform(low=9, high=15, size=100).astype( self.dtype ) self.case = np.concatenate( [zero_case, rand_case, one2eight_case, over_eight_case] ) self.inputs = {'x': self.case} self.target = output_i0e(self.inputs['x']) def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad( ['x'], 'out', user_defined_grads=[ref_i0e_grad(self.case, 1 / self.case.size)], ) if __name__ == "__main__": unittest.main()