/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/prelu_kernel.h" #include "paddle/phi/backends/onednn/onednn_reuse.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void PReluKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& alpha, const std::string& data_format, const std::string& mode, DenseTensor* out) { PADDLE_ENFORCE_EQ(dev_ctx.GetPlace().GetType(), AllocationType::CPU, phi::errors::PreconditionNotMet( "Operator oneDNN PReLU must use CPUPlace")); bool is_test = dev_ctx.HasDnnAttr("is_test") ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("is_test")) : false; funcs::PReluOneDNNHandler handler(dev_ctx.GetEngine(), dev_ctx.GetPlace(), x, alpha, mode, data_format, is_test); auto src_memory_p = handler.AcquireSrcMemory(&x); auto weights_memory_p = handler.AcquireWeightsMemoryPossiblyWithReorder(&alpha, is_test); auto dst_memory_p = handler.AcquireDstMemory(out); auto prelu_p = handler.AcquireForwardPrimitive(); auto& astream = OneDNNContext::tls().get_stream(); prelu_p->execute(astream, {{DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_WEIGHTS, *weights_memory_p}, {DNNL_ARG_DST, *dst_memory_p}}); astream.wait(); out->set_mem_desc(dst_memory_p->get_desc()); } } // namespace phi PD_REGISTER_KERNEL( prelu, OneDNN, ONEDNN, phi::PReluKernel, float, phi::dtype::bfloat16) {}