/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include "paddle/fluid/platform/profiler/event_tracing.h" #include "paddle/phi/backends/onednn/onednn_context.h" #include "paddle/phi/backends/onednn/onednn_helper.h" #include "paddle/phi/common/data_type.h" #include "paddle/phi/common/int_array.h" #include "paddle/phi/common/place.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/kernels/funcs/axis_utils.h" #include "paddle/phi/kernels/funcs/data_layout_transform.h" #include "paddle/phi/kernels/funcs/pooling.h" namespace phi { namespace funcs { using user_function = std::function(const float*)>; using memory = dnnl::memory; using OneDNNMemoryFormat = dnnl::memory::format_tag; static void AppendActivation(const OneDNNContext& dev_ctx, dnnl::post_ops& post_ops, // NOLINT float activation_scale = 1.0f) { const auto invalid_attribute = dev_ctx.HasDnnAttr("fuse_activation") ? PADDLE_GET_CONST(std::string, dev_ctx.GetDnnAttr("fuse_activation")) .empty() : true; if (invalid_attribute) return; const auto fuse_activation = dev_ctx.HasDnnAttr("fuse_activation") ? PADDLE_GET_CONST(std::string, dev_ctx.GetDnnAttr("fuse_activation")) : ""; const auto fuse_alpha = dev_ctx.HasDnnAttr("fuse_alpha") ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("fuse_alpha")) : 0.0f; const auto fuse_beta = dev_ctx.HasDnnAttr("fuse_beta") ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("fuse_beta")) : 0.0f; if (fuse_activation == "hard_sigmoid") { post_ops.append_eltwise(activation_scale, dnnl::algorithm::eltwise_linear, fuse_alpha, fuse_beta); post_ops.append_eltwise( activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f); } else { const std::unordered_map activation_map = { {"abs", dnnl::algorithm::eltwise_abs}, {"clip", dnnl::algorithm::eltwise_clip}, {"gelu", dnnl::algorithm::eltwise_gelu_erf}, {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf}, {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh}, {"hard_swish", dnnl::algorithm::eltwise_hardswish}, {"leaky_relu", dnnl::algorithm::eltwise_relu}, {"mish", dnnl::algorithm::eltwise_mish}, {"relu", dnnl::algorithm::eltwise_relu}, {"relu6", dnnl::algorithm::eltwise_bounded_relu}, {"sigmoid", dnnl::algorithm::eltwise_logistic}, {"sqrt", dnnl::algorithm::eltwise_sqrt}, {"swish", dnnl::algorithm::eltwise_swish}, {"tanh", dnnl::algorithm::eltwise_tanh}}; const auto& activation_type = activation_map.find(fuse_activation); PADDLE_ENFORCE_NE( activation_type, activation_map.end(), phi::errors::InvalidArgument( "Activation '%s' not found in oneDNN algorithms mapper", fuse_activation)); post_ops.append_eltwise( activation_scale, activation_type->second, fuse_alpha, fuse_beta); } } template class OneDNNHandlerT { public: OneDNNHandlerT(const OneDNNContext& dev_ctx, dnnl::engine engine, Place cpu_place, const std::string& base_key) : dev_ctx_(dev_ctx), engine_(engine), place_(cpu_place), key_common_(base_key), key_(ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)), fwd_pd_(nullptr), bwd_pd_(nullptr) { OneDNNContext::tls().log_lib_version(); } std::shared_ptr AcquireForwardPrimitive() { const std::string key_p = key_ + "@fwd_p"; auto forward_p = std::static_pointer_cast(dev_ctx_.GetBlob(key_p)); if (forward_p == nullptr) { forward_p = std::make_shared(*fwd_pd_); dev_ctx_.SetBlob(key_p, forward_p); } return forward_p; } std::shared_ptr AcquireBackwardPrimitive() { const std::string key_p = key_ + "@bwd_p"; auto backward_p = std::static_pointer_cast(dev_ctx_.GetBlob(key_p)); if (backward_p == nullptr) { backward_p = std::make_shared(*bwd_pd_); dev_ctx_.SetBlob(key_p, backward_p); } return backward_p; } std::shared_ptr AcquireBackwardWeightsPrimitive() { const std::string key_p = key_ + "@bwd_w_p"; auto backward_p = std::static_pointer_cast(dev_ctx_.GetBlob(key_p)); if (backward_p == nullptr) { PADDLE_ENFORCE_NOT_NULL( bwd_w_pd_, errors::Unavailable("BWD_PD should be set when " "getting BWD prim witk key: %s .", key_p)); backward_p = std::make_shared(*bwd_w_pd_); dev_ctx_.SetBlob(key_p, backward_p); } return backward_p; } std::shared_ptr AcquireSrcMemory(const DenseTensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive( fwd_pd_->src_desc(), to_void_cast(input_data), "@src_mem_p"); } template std::shared_ptr AcquireDstMemory(DenseTensor* output) { T_out* ptr = output->mutable_data(place_, fwd_pd_->dst_desc().get_size()); return this->AcquireMemoryFromPrimitive( fwd_pd_->dst_desc(), ptr, "@dst_mem_p"); } template std::shared_ptr AcquireDstMemory(void) { return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p"); } template std::shared_ptr AcquireDstMemory(const DenseTensor* output) { const T_out* output_data = output->data(); return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(), to_void_cast(output_data), "@bwd-dst_mem_p"); } std::shared_ptr AcquireDiffDstMemory( const DenseTensor* diffdst) { const T* ptr = diffdst->data(); return this->AcquireMemoryFromPrimitive( bwd_pd_->diff_dst_desc(), to_void_cast(ptr), "@diff_dst_mem_p"); } std::shared_ptr AcquireDiffSrcMemory(DenseTensor* diffsrc) { T* ptr = diffsrc->mutable_data(place_, bwd_pd_->diff_src_desc().get_size()); return this->AcquireMemoryFromPrimitive( bwd_pd_->diff_src_desc(), ptr, "@diff_src_mem_p"); } // Buffer of given DenseTensor is used for oneDNN computation std::shared_ptr AcquireDiffWeightsMemory( DenseTensor* diff_weights) { PADDLE_ENFORCE_NOT_NULL( bwd_w_pd_, errors::Unavailable( "BWD_W_PD should be set when getting BWD grad of weights.")); T* ptr = diff_weights->mutable_data( place_, bwd_w_pd_->diff_weights_desc().get_size()); return this->AcquireMemoryFromPrimitive( bwd_w_pd_->diff_weights_desc(), ptr, "@diff_wei_mem_p"); } // Buffer is allocated by oneDNN to store computation results std::shared_ptr AcquireDiffWeightsMemory(void) { PADDLE_ENFORCE_NOT_NULL( bwd_w_pd_, errors::Unavailable( "BWD_W_PD should be set when getting BWD grad of weights.")); return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(), "@diff_wei_mem_p"); } protected: bool isCached() { const std::string key_pd = key_ + "@fwd_pd"; fwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); return (fwd_pd_ != nullptr); } bool isBwdCached() { const std::string key_pd = key_ + "@bwd_pd"; bwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); if (bwd_pd_ == nullptr) { return false; } else { if (std::is_same::value == false) { const std::string key_bw_w_pd = key_ + "@bwd_w_pd"; bwd_w_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_bw_w_pd)); } // When BWD is cached then still we need to Get FWD PD const std::string key_fpd = key_ + "@fwd_pd"; fwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_fpd)); PADDLE_ENFORCE_NOT_NULL( fwd_pd_, errors::Unavailable( "Error: FWD PD should be set when BWD PD is cached.")); return true; } } // If your primitive descriptor requires attributes, pass them as a // first argument and paramters to descriptor constructor in the following // arguments. Otherwise, all arguments will be forwarded to descriptor // constructor, including the first one. template void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) { // This is used when we can recreate FWD PD in BWD so // we do not need to pass FWD to BWD const std::string key_pd = key_ + "@fwd_pd"; fwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); if (fwd_pd_ == nullptr) { CreateForwardPrimitiveDescriptor(first_arg, std::forward(args)...); dev_ctx_.SetBlob(key_pd, fwd_pd_); } } // Using sfinae to specialise variadic function. Workaround for not having // if constexpr in C++ 11. template typename std::enable_if::type, dnnl::primitive_attr>::value>::type CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) { auto fwd_desc = typename TForward::desc(std::forward(args)...); fwd_pd_ = std::make_shared( fwd_desc, first, engine_); } template typename std::enable_if::type, dnnl::primitive_attr>::value>::type CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) { auto fwd_desc = typename TForward::desc(std::forward(first), std::forward(args)...); fwd_pd_ = std::make_shared(fwd_desc, engine_); } template void AcquireBackwardPrimitiveDescriptor(Args&&... args) { // fwd_pd_ is set during grad by calling // AcquireForwardPrimitiveDescriptor PADDLE_ENFORCE_NOT_NULL( fwd_pd_, errors::Unavailable("Get OneDNN Forward primitive %s failed.", key_ + "@fwd_pd")); const std::string key_pd = key_ + "@bwd_pd"; bwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); if (bwd_pd_ == nullptr) { auto bwd_desc = typename TBackward::desc(std::forward(args)...); bwd_pd_ = std::make_shared( bwd_desc, engine_, *fwd_pd_); dev_ctx_.SetBlob(key_pd, bwd_pd_); } } template void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) { // fwd_pd_ is set during grad by calling // AcquireForwardPrimitiveDescriptor PADDLE_ENFORCE_NOT_NULL( fwd_pd_, errors::Unavailable("Get OneDNN Forward primitive %s failed.", key_ + "@fwd_pd")); const std::string key_pd = key_ + "@bwd_w_pd"; bwd_w_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); if (bwd_w_pd_ == nullptr) { auto bwd_desc = typename TBackward_params::desc(std::forward(args)...); bwd_w_pd_ = std::make_shared( bwd_desc, engine_, *fwd_pd_); dev_ctx_.SetBlob(key_pd, bwd_w_pd_); } } std::shared_ptr AcquireMemoryFromPrimitive( const std::string& suffix) { return std::static_pointer_cast( dev_ctx_.GetBlob(key_ + suffix)); } std::shared_ptr AcquireMemoryFromPrimitive( dnnl::memory::desc md, void* ptr, const std::string& suffix) { const auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { mem_p = std::make_shared(md, engine_, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } std::shared_ptr AcquireMemoryFromPrimitive( dnnl::memory::desc md, const std::string& suffix) { const auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { mem_p = std::make_shared(md, engine_); dev_ctx_.SetBlob(local_key, mem_p); } return mem_p; } void AcquireReorder(const std::shared_ptr& user_memory_p, const std::shared_ptr& target_memory_p) { auto reorder_p = std::make_shared(*user_memory_p, *target_memory_p); auto& astream = OneDNNContext::tls().get_stream(); paddle::platform::RecordEvent record_reorder( "int_reorder", paddle::platform::TracerEventType::UserDefined, 1, paddle::platform::EventRole::kUniqueOp); reorder_p->execute( astream, {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}}); astream.wait(); } template std::shared_ptr AcquireMemoryWithReorder( const dnnl::memory::desc& user_md, const dnnl::memory::desc& target_md, void* ptr, const std::string& suffix, bool is_persistent = false, std::function(const F*)> custom_reorder_func = {}, const std::vector& scale_data = {1.0f}, int mask = 0) { const auto target_key = key_ + suffix + "_target"; const auto key_reorder_p = key_ + suffix + "reorder_p"; const auto user_key = key_ + suffix + "_user"; auto target_memory_p = std::static_pointer_cast(dev_ctx_.GetBlob(target_key)); if (target_memory_p == nullptr) { if (custom_reorder_func) { auto reordered_data = custom_reorder_func(reinterpret_cast(ptr)); dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data); ptr = reinterpret_cast(reordered_data.get()); } auto user_memory_p = std::make_shared(user_md, engine_, ptr); if (user_md != target_md) { target_memory_p = std::make_shared(target_md, engine_); dnnl::reorder::primitive_desc reorder_pdesc; if (is_int8()) { dnnl::primitive_attr attr; attr.set_output_scales(mask, scale_data); reorder_pdesc = dnnl::reorder::primitive_desc( *user_memory_p, *target_memory_p, attr); } else { reorder_pdesc = dnnl::reorder::primitive_desc(*user_memory_p, *target_memory_p); } auto reorder_p = std::make_shared(reorder_pdesc); dev_ctx_.SetBlob(key_reorder_p, reorder_p); auto& astream = OneDNNContext::tls().get_stream(); paddle::platform::RecordEvent record_reorder( "int_reorder", paddle::platform::TracerEventType::UserDefined, 1, paddle::platform::EventRole::kUniqueOp); reorder_p->execute( astream, {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}}); astream.wait(); } else { target_memory_p = user_memory_p; } dev_ctx_.SetBlob(user_key, user_memory_p); dev_ctx_.SetBlob(target_key, target_memory_p); } else if (!is_persistent) { auto& astream = OneDNNContext::tls().get_stream(); auto user_memory_p = std::static_pointer_cast(dev_ctx_.GetBlob(user_key)); user_memory_p->set_data_handle(ptr); // TODO(jczaja): Here we detect if reorder is cached it means it is needed // need to change this to get rid of keys auto reorder_p = std::static_pointer_cast( dev_ctx_.GetBlob(key_reorder_p)); if (reorder_p != nullptr) { paddle::platform::RecordEvent record_reorder( "int_reorder", paddle::platform::TracerEventType::UserDefined, 1, paddle::platform::EventRole::kUniqueOp); reorder_p->execute( astream, {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}}); astream.wait(); } } return target_memory_p; } std::shared_ptr AcquireMemory(const std::string& suffix) { const auto local_key = key_ + suffix; return std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); } const OneDNNContext& dev_ctx_; dnnl::engine engine_; Place place_; std::string key_common_; std::string key_; std::shared_ptr fwd_pd_; std::shared_ptr bwd_pd_; std::shared_ptr bwd_w_pd_; }; template class OneDNNHandlerNoCachingT { public: OneDNNHandlerNoCachingT(dnnl::engine engine, Place cpu_place) : engine_(engine), place_(cpu_place), fwd_pd_(nullptr), bwd_pd_(nullptr) { OneDNNContext::tls().log_lib_version(); } std::shared_ptr AcquireForwardPrimitive() { return std::make_shared(*fwd_pd_); } std::shared_ptr AcquireBackwardPrimitive() { return std::make_shared(*bwd_pd_); } std::shared_ptr AcquireBackwardWeightsPrimitive() { PADDLE_ENFORCE_NOT_NULL(bwd_w_pd_, errors::Unavailable("BWD_PD should be set when " "getting BWD prim .")); return std::make_shared(*bwd_w_pd_); } std::shared_ptr AcquireSrcMemory(const DenseTensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive(fwd_pd_->src_desc(), to_void_cast(input_data)); } template std::shared_ptr AcquireDstMemory(DenseTensor* output) { T_out* ptr = output->mutable_data(place_, fwd_pd_->dst_desc().get_size()); return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr); } template std::shared_ptr AcquireDstMemory(void) { return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc()); } template std::shared_ptr AcquireDstMemory(const DenseTensor* output) { const T_out* output_data = output->data(); return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(), to_void_cast(output_data)); } std::shared_ptr AcquireDiffDstMemory( const DenseTensor* diffdst) { const T* ptr = diffdst->data(); return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_dst_desc(), to_void_cast(ptr)); } std::shared_ptr AcquireDiffSrcMemory(DenseTensor* diffsrc) { T* ptr = diffsrc->mutable_data(place_, bwd_pd_->diff_src_desc().get_size()); return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr); } // Buffer of given DenseTensor is used for oneDNN computation std::shared_ptr AcquireDiffWeightsMemory( DenseTensor* diff_weights) { PADDLE_ENFORCE_NOT_NULL( bwd_w_pd_, errors::Unavailable( "BWD_W_PD should be set when getting BWD grad of weights.")); T* ptr = diff_weights->mutable_data( place_, bwd_w_pd_->diff_weights_desc().get_size()); return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(), ptr); } // Buffer is allocated by oneDNN to store computation results std::shared_ptr AcquireDiffWeightsMemory(void) { PADDLE_ENFORCE_NOT_NULL( bwd_w_pd_, errors::Unavailable( "BWD_W_PD should be set when getting BWD grad of weights.")); return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc()); } protected: // If your primitive descriptor requires attributes, pass them as a // first argument and paramters to descriptor constructor in the following // arguments. Otherwise, all arguments will be forwarded to descriptor // constructor, including the first one. template void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) { CreateForwardPrimitiveDescriptor(first_arg, std::forward(args)...); } // Using sfinae to specialise variadic function. Workaround for not having // if constexpr in C++ 11. template typename std::enable_if::type, dnnl::primitive_attr>::value>::type CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) { auto fwd_desc = typename TForward::desc(std::forward(args)...); fwd_pd_ = std::make_shared( fwd_desc, first, engine_); } template typename std::enable_if::type, dnnl::primitive_attr>::value>::type CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) { auto fwd_desc = typename TForward::desc(std::forward(first), std::forward(args)...); fwd_pd_ = std::make_shared(fwd_desc, engine_); } template void AcquireBackwardPrimitiveDescriptor(Args&&... args) { // fwd_pd_ is set during grad by calling // AcquireForwardPrimitiveDescriptor PADDLE_ENFORCE_NOT_NULL( fwd_pd_, errors::Unavailable("Get oneDNN Forward primitive %s failed.")); auto bwd_desc = typename TBackward::desc(std::forward(args)...); bwd_pd_ = std::make_shared( bwd_desc, engine_, *fwd_pd_); } template void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) { // fwd_pd_ is set during grad by calling // AcquireForwardPrimitiveDescriptor PADDLE_ENFORCE_NOT_NULL( fwd_pd_, errors::Unavailable("Get oneDNN Forward primitive %s failed.")); auto bwd_desc = typename TBackward_params::desc(std::forward(args)...); bwd_w_pd_ = std::make_shared( bwd_desc, engine_, *fwd_pd_); } std::shared_ptr AcquireMemoryFromPrimitive( dnnl::memory::desc md, void* ptr) { return std::make_shared(md, engine_, ptr); } std::shared_ptr AcquireMemoryFromPrimitive( dnnl::memory::desc md) { return std::make_shared(md, engine_); } void AcquireReorder(const std::shared_ptr& user_memory_p, const std::shared_ptr& target_memory_p) { auto reorder_p = std::make_shared(*user_memory_p, *target_memory_p); auto& astream = OneDNNContext::tls().get_stream(); paddle::platform::RecordEvent record_reorder( "int_reorder", paddle::platform::TracerEventType::UserDefined, 1, paddle::platform::EventRole::kUniqueOp); reorder_p->execute( astream, {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}}); astream.wait(); } template std::shared_ptr AcquireMemoryWithReorder( const dnnl::memory::desc& user_md, const dnnl::memory::desc& target_md, void* ptr, bool is_persistent = false, std::function(const F*)> custom_reorder_func = {}) { std::shared_ptr target_memory_p; if (custom_reorder_func) { auto reordered_data = custom_reorder_func(reinterpret_cast(ptr)); ptr = reinterpret_cast(reordered_data.get()); } auto user_memory_p = std::make_shared(user_md, engine_, ptr); if (user_md != target_md) { target_memory_p = std::make_shared(target_md, engine_); auto reorder_p = std::make_shared(*user_memory_p, *target_memory_p); auto& astream = OneDNNContext::tls().get_stream(); paddle::platform::RecordEvent record_reorder( "int_reorder", paddle::platform::TracerEventType::UserDefined, 1, paddle::platform::EventRole::kUniqueOp); reorder_p->execute( astream, {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}}); astream.wait(); } else { target_memory_p = user_memory_p; } return target_memory_p; } dnnl::engine engine_; Place place_; std::shared_ptr fwd_pd_; std::shared_ptr bwd_pd_; std::shared_ptr bwd_w_pd_; }; template class ActivationOneDNNHandler : public OneDNNHandlerNoCachingT { public: ActivationOneDNNHandler(dnnl::algorithm algorithm, float alpha, float beta, const dnnl::engine engine, Place cpu_place, const DenseTensor* x) : OneDNNHandlerNoCachingT(engine, cpu_place) { this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training, algorithm, x->mem_desc(), alpha, beta); } ActivationOneDNNHandler(dnnl::algorithm algorithm, float alpha, float beta, const dnnl::engine engine, Place cpu_place, const DenseTensor* x, const DenseTensor* dout) : OneDNNHandlerNoCachingT(engine, cpu_place) { this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training, algorithm, x->mem_desc(), alpha, beta); this->AcquireBackwardPrimitiveDescriptor( algorithm, dout->mem_desc(), x->mem_desc(), alpha, beta); } std::shared_ptr AcquireBackwardSrcMemory( const DenseTensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(), to_void_cast(input_data)); } }; template class SoftmaxOneDNNHandler : public OneDNNHandlerNoCachingT { public: SoftmaxOneDNNHandler(const dnnl::engine onednn_engine, Place cpu_place, int axis, const DenseTensor* x, DenseTensor* out) : OneDNNHandlerNoCachingT(onednn_engine, cpu_place) { PADDLE_ENFORCE_EQ( x->dims(), out->dims(), phi::errors::InvalidArgument( "The shape of input and output tensor must be identical.")); const int canonical_axis = funcs::CanonicalAxis(axis, x->dims().size()); this->AcquireForwardPrimitiveDescriptor( dnnl::prop_kind::forward_scoring, x->mem_desc(), canonical_axis); } SoftmaxOneDNNHandler(const dnnl::engine onednn_engine, Place cpu_place, int axis, const DenseTensor* out, const DenseTensor* out_grad) : OneDNNHandlerNoCachingT(onednn_engine, cpu_place) { const int canonical_axis = funcs::CanonicalAxis(axis, out_grad->dims().size()); this->AcquireForwardPrimitiveDescriptor( dnnl::prop_kind::forward_scoring, out->mem_desc(), canonical_axis); this->AcquireBackwardPrimitiveDescriptor( out_grad->mem_desc(), out->mem_desc(), canonical_axis); } }; class ReorderOneDNNHandler { public: ReorderOneDNNHandler(std::vector& dims, // NOLINT DataType ptype, dnnl::memory::data_type dtype, dnnl::engine engine) : dims_(dims), ptype_(ptype), ptype_dst_(ptype), dtype_(dtype), dtype_dst_(dtype), engine_(engine) {} ReorderOneDNNHandler(std::vector& dims, // NOLINT DataType ptype, dnnl::memory::data_type dtype, DataType ptype_dst, dnnl::memory::data_type dtype_dst, dnnl::engine engine) : dims_(dims), ptype_(ptype), ptype_dst_(ptype_dst), dtype_(dtype), dtype_dst_(dtype_dst), engine_(engine) {} std::shared_ptr AcquireSrcMemory(const dnnl::memory::desc& md, void* ptr) { return std::make_shared(md, engine_, ptr); } std::shared_ptr AcquireSrcMemory(const OneDNNMemoryFormat& fmt, void* ptr) { auto md = dnnl::memory::desc(dims_, dtype_, fmt); return std::make_shared(md, engine_, ptr); } std::shared_ptr AcquireSubmemory( const std::vector& dims, const std::vector& offset, const std::shared_ptr& mem_p) { auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset}); auto sub_mem_p = std::make_shared( sub_md, engine_, mem_p->get_data_handle()); return sub_mem_p; } std::shared_ptr AcquireDstMemory(DenseTensor* output, const OneDNNMemoryFormat& fmt, Place place) { auto dst_md = OneDNNMemDesc(dims_, dtype_dst_, fmt); auto dst_data = output->mutable_data(place, ptype_dst_, dst_md.get_size()); return std::make_shared(dst_md, engine_, dst_data); } std::shared_ptr AcquireDstMemory( DenseTensor* output, const dnnl::memory::desc& src_md, Place place) { if (ptype_dst_ == ptype_) { auto dst_data = output->mutable_data(place, ptype_dst_, src_md.get_size()); return std::make_shared(src_md, engine_, dst_data); } else { auto dst_md = src_md; dst_md.data.data_type = static_cast(dtype_dst_); auto dst_data = output->mutable_data(place, ptype_dst_, dst_md.get_size()); return std::make_shared(dst_md, engine_, dst_data); } } std::shared_ptr AcquireDstMemory( DenseTensor* output, const std::vector& dims, const std::vector& strides, Place place) { auto dst_md = dnnl::memory::desc(dims, dtype_dst_, strides); auto dst_data = output->mutable_data(place, ptype_dst_, dst_md.get_size()); return std::make_shared(dst_md, engine_, dst_data); } std::shared_ptr AcquireDstMemory( DenseTensor* output, const std::vector& dims, const OneDNNMemoryFormat& fmt, Place place) { auto dst_md = OneDNNMemDesc(dims, dtype_dst_, fmt); auto dst_data = output->mutable_data(place, ptype_dst_, dst_md.get_size()); return std::make_shared(dst_md, engine_, dst_data); } std::shared_ptr AcquireReorder( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p) { return std::make_shared(*(src_memory_p), *(dst_memory_p)); } std::shared_ptr AcquireReorder( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p, const dnnl::primitive_attr& attrs) { return std::make_shared( *(src_memory_p), *(dst_memory_p), attrs); } private: std::vector dims_; DataType ptype_, ptype_dst_; dnnl::memory::data_type dtype_, dtype_dst_; dnnl::engine engine_; }; template class BinaryOneDNNHandler : public OneDNNHandlerNoCachingT { public: bool use_broadcasting_hack; BinaryOneDNNHandler(const dnnl::algorithm algo, const int axis, const dnnl::engine engine, Place cpu_place, const DenseTensor* x, const DenseTensor* y, DenseTensor* out, float scale_x, float scale_y, float scale_out, bool allow_hack, const dnnl::post_ops& post_ops = dnnl::post_ops{}) : OneDNNHandlerNoCachingT(engine, cpu_place) { use_broadcasting_hack = false; const auto src_x_tz = vectorize(x->dims()); const auto src_y_tz = vectorize(y->dims()); // if output tensor(z) is nullptr then we are computing into oneDNN // managed buffer auto rankdiff = x->dims().size() - y->dims().size(); auto dst_tz = (out == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz) : vectorize(out->dims()); auto src0_md = x->mem_desc(); auto src1_md = y->mem_desc(); if (rankdiff > 0) { // Second input is of smaller rank than first std::vector dims1_ex(rankdiff, 1); dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)), src_y_tz.begin(), src_y_tz.end()); // For broadcasting for NHWC we need rotate extended shape if (OneDNNContext::tls().get_cur_paddle_data_layout() == DataLayout::kNHWC) { std::rotate(dims1_ex.begin() + 1, dims1_ex.end() - 1, dims1_ex.end()); } src1_md = src1_md.reshape(dims1_ex); } else if (rankdiff < 0) { // First input is of smaller than second std::vector dims0_ex(-rankdiff, 1); dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)), src_x_tz.begin(), src_x_tz.end()); // For broadcasting for NHWC we need rotate extended shape if (OneDNNContext::tls().get_cur_paddle_data_layout() == DataLayout::kNHWC) { std::rotate(dims0_ex.begin() + 1, dims0_ex.end() - 1, dims0_ex.end()); } src0_md = src0_md.reshape(dims0_ex); } auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_out, post_ops); // Workaround for U2++ model which deletes first tensor dimensions to enable // optimized oneDNNs broadcasting. Output tensor is reshaped back afterwards // at the end of the kernel, after the computation if (allow_hack && dst_tz.size() == 4 && src0_md.dims()[2] != src1_md.dims()[2]) { auto are_strides_plain = [](int64_t* strides, int ndims) { for (int i = 0; i < ndims - 1; ++i) { if (strides[i] < strides[i + 1]) { return false; } } return true; }; auto src0_strides = src0_md.data.format_desc.blocking.strides; auto src1_strides = src1_md.data.format_desc.blocking.strides; auto src0_dims = src0_md.dims(); auto src1_dims = src1_md.dims(); bool can_squeeze = src0_dims[0] == src1_dims[0] && src0_dims[1] == src1_dims[1] && src0_dims[3] == src1_dims[3]; if (can_squeeze && are_strides_plain(src0_strides, 4) && are_strides_plain(src1_strides, 4)) { src0_dims[1] *= dst_tz[0]; src1_dims[1] *= dst_tz[0]; dst_tz[1] *= dst_tz[0]; dst_tz.erase(dst_tz.begin()); src0_md = src0_md.reshape({src0_dims.begin() + 1, src0_dims.end()}); src1_md = src1_md.reshape({src1_dims.begin() + 1, src1_dims.end()}); use_broadcasting_hack = true; } } auto dst_md = memory::desc(dst_tz, OneDNNGetDataType(), OneDNNMemoryFormat::any); if (x->numel() < y->numel()) { if (algo == dnnl::algorithm::binary_sub) { attributes = CreateAttributes( algo, -1.0 * scale_x, -1.0 * scale_y, scale_out, post_ops); } this->AcquireForwardPrimitiveDescriptor( attributes, algo, src1_md, src0_md, dst_md); } else { this->AcquireForwardPrimitiveDescriptor( attributes, algo, src0_md, src1_md, dst_md); } } std::shared_ptr AcquireSecondSrcMemory( const DenseTensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src1_desc(), to_void_cast(input_data)); } private: static inline dnnl::primitive_attr CreateAttributes( dnnl::algorithm op, float scale_x, float scale_y, float scale_out, dnnl::post_ops post_ops = dnnl::post_ops{}) { // Scales set in attributes for inputs contibute to the output equation // in the following way (assuming no broadcasting takes place): // output_i = scale_0 * x_i <+ or *> scale_1 * y_i; // Hence we have to create scales that will: // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y) // 2. Quantize their result to output scale range, by multiplying with // (scale_z) // If we combine these two, we end up with following equation // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y) // Hence, to mimic such behaviour using provided interface, // For add operation the equation is equal to: // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y // // For mul operation on the other hand // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y // float scale_0 = scale_out / scale_x; float scale_1 = op == dnnl::algorithm::binary_add ? scale_out / scale_y : 1.0 / scale_y; dnnl::primitive_attr attributes; attributes.set_scales( /* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0, {scale_0}); attributes.set_scales( /* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0, {scale_1}); if (post_ops.len() > 0) attributes.set_post_ops(post_ops); return attributes; } }; template class BroadcastDataOneDNNHandler : public OneDNNHandlerNoCachingT { public: BroadcastDataOneDNNHandler(const dnnl::algorithm algo, const dnnl::engine engine, Place cpu_place, const DenseTensor* x, DenseTensor* out, float scale_x, float scale_y, const std::vector& extended_x_dims) : OneDNNHandlerNoCachingT(engine, cpu_place) { const auto src0_tz = vectorize(out->dims()); const auto src0_md = dnnl::memory::desc( src0_tz, OneDNNGetDataType(), GetPlainOneDNNFormat(src0_tz.size())); const auto src1_md = x->mem_desc().reshape(extended_x_dims); dnnl::primitive_attr attributes; attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x}); attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y}); this->AcquireForwardPrimitiveDescriptor( attributes, algo, src0_md, src1_md, src0_md); } template std::shared_ptr AcquireZeroedDstMemory(DenseTensor* out) { T_out* ptr = out->mutable_data(this->place_, this->fwd_pd_->dst_desc().get_size()); memset(ptr, 0, this->fwd_pd_->dst_desc().get_size()); return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr); } }; template class PReluOneDNNHandler : public OneDNNHandlerNoCachingT { public: PReluOneDNNHandler(const dnnl::engine engine, Place cpu_place, const DenseTensor& x, const DenseTensor& weights, const std::string& mode, const std::string& data_format, const bool is_test) : OneDNNHandlerNoCachingT( engine, cpu_place) { auto weights_dims = phi::vectorize(weights.dims()); // weights must have same size as X only for "element" case if (weights.dims().size() != x.dims().size()) { auto new_weights_dims = std::vector(x.dims().size(), 1); if (mode == "channel") { new_weights_dims[1] = *std::max_element(weights_dims.begin(), weights_dims.end()); } weights_dims = std::move(new_weights_dims); } auto weights_md = memory::desc( weights_dims, OneDNNGetDataType(), memory::format_tag::any); this->AcquireForwardPrimitiveDescriptor( dnnl::prop_kind::forward_training, x.mem_desc(), weights_md); if (!is_test) { this->AcquireBackwardPrimitiveDescriptor( x.mem_desc(), weights_md, x.mem_desc(), weights_md); } } std::shared_ptr AcquireWeightsMemoryPossiblyWithReorder( const DenseTensor* weights, const bool is_test) { const T* weights_data = weights->data(); // if weights are 1D, every format tag is correct, so we accept // format_tag::any's output and no reorder is needed if (weights->dims().size() == 1) { return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(), to_void_cast(weights_data)); } return this->AcquireMemoryWithReorder(weights->mem_desc(), this->fwd_pd_->weights_desc(), to_void_cast(weights_data), is_test); } std::shared_ptr AcquireDiffWeightsMemory(DenseTensor* output) { T* output_data = output->mutable_data( this->place_, this->bwd_pd_->diff_weights_desc().get_size()); return this->AcquireMemoryFromPrimitive(this->bwd_pd_->diff_weights_desc(), output_data); } }; template class ReductionOneDNNHandler : public OneDNNHandlerNoCachingT { public: ReductionOneDNNHandler(const dnnl::algorithm algo, const float p, const float eps, const dnnl::engine engine, Place cpu_place, const DenseTensor* x, const DenseTensor* out, std::vector out_tz, const dnnl::primitive_attr& attrs = NULL) : OneDNNHandlerNoCachingT(engine, cpu_place) { const auto out_md = memory::desc( out_tz, OneDNNGetDataType(), dnnl::memory::format_tag::any); if (attrs) this->AcquireForwardPrimitiveDescriptor( attrs, algo, x->mem_desc(), out_md, p, eps); else this->AcquireForwardPrimitiveDescriptor( algo, x->mem_desc(), out_md, p, eps); } }; template class ClipOneDNNHandler : public OneDNNHandlerNoCachingT { public: ClipOneDNNHandler(const Scalar& min, const Scalar& max, const dnnl::engine engine, Place cpu_place, const DenseTensor* x) : OneDNNHandlerNoCachingT(engine, cpu_place) { float alpha = min.to(); float beta = max.to(); this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training, dnnl::algorithm::eltwise_clip_v2, x->mem_desc(), alpha, beta); } ClipOneDNNHandler(const Scalar& min, const Scalar& max, const dnnl::engine engine, Place cpu_place, const DenseTensor* x, const DenseTensor* dout) : OneDNNHandlerNoCachingT(engine, cpu_place) { float alpha = min.to(); float beta = max.to(); this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training, dnnl::algorithm::eltwise_clip_v2, x->mem_desc(), alpha, beta); this->AcquireBackwardPrimitiveDescriptor(dnnl::algorithm::eltwise_clip_v2, dout->mem_desc(), x->mem_desc(), alpha, beta); } std::shared_ptr AcquireBackwardSrcMemory( const DenseTensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(), to_void_cast(input_data)); } }; template class BatchNormOneDNNHandler : public OneDNNHandlerNoCachingT { public: BatchNormOneDNNHandler(const dnnl::engine engine, Place cpu_place, const DenseTensor* x, const float epsilon, const bool fuse_with_relu, const bool global_stats, const bool test_mode) : OneDNNHandlerNoCachingT(engine, cpu_place) { // Flags are added by bitwise OR operation auto flags = dnnl::normalization_flags::use_scale_shift; // 001 if (global_stats) flags |= dnnl::normalization_flags::use_global_stats; // 010 if (fuse_with_relu && test_mode) flags |= dnnl::normalization_flags::fuse_norm_relu; // 100 this->AcquireForwardPrimitiveDescriptor( global_stats ? dnnl::prop_kind::forward_scoring : dnnl::prop_kind::forward_training, x->mem_desc(), epsilon, flags); } std::shared_ptr AcquireScaleShiftMemory( const DenseTensor* scale, const DenseTensor* shift) { auto scale_tz = phi::vectorize(scale->dims()); const unsigned int C = scale_tz[0]; PADDLE_ENFORCE_EQ( scale_tz.size(), 1, phi::errors::InvalidArgument( "Dims of scale tensor must be 1, but received scale's size is %d", scale_tz.size())); auto scaleshift_memory = this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc()); // MKLDNN requires a single piece of memory for scale and shift/bias data auto mem_data_handle = reinterpret_cast(scaleshift_memory->get_data_handle()); std::copy(scale->data(), scale->data() + C, mem_data_handle); std::copy(shift->data(), shift->data() + C, mem_data_handle + C); return scaleshift_memory; } std::shared_ptr AcquireDiffScaleShiftMemory( T* diff_scaleshift_data) { return this->AcquireMemoryFromPrimitive(this->bwd_pd_->diff_weights_desc(), diff_scaleshift_data); } std::shared_ptr AcquireMeanMemory( const phi::DenseTensor* mean) { const T* mean_data = mean->data(); return this->AcquireMemoryFromPrimitive(this->fwd_pd_->mean_desc(), to_void_cast(mean_data)); } std::shared_ptr AcquireMeanMemory(phi::DenseTensor* mean) { T* mean_data = mean->mutable_data(this->place_, this->fwd_pd_->mean_desc().get_size()); return this->AcquireMemoryFromPrimitive(this->fwd_pd_->mean_desc(), mean_data); } std::shared_ptr AcquireVarianceMemory( const phi::DenseTensor* variance) { const T* variance_data = variance->data(); return this->AcquireMemoryFromPrimitive(this->fwd_pd_->variance_desc(), to_void_cast(variance_data)); } std::shared_ptr AcquireVarianceMemory( phi::DenseTensor* variance) { T* variance_data = variance->mutable_data( this->place_, this->fwd_pd_->variance_desc().get_size()); return this->AcquireMemoryFromPrimitive(this->fwd_pd_->variance_desc(), variance_data); } }; template class PoolingOneDNNHandler : public OneDNNHandlerNoCachingT { public: PoolingOneDNNHandler(const OneDNNContext& dev_ctx, const std::string& pooling_type, const IntArray& kernel_size, const std::vector& strides, const std::vector& paddings, bool global_pooling, const std::string& padding_algorithm, bool ceil_mode, bool exclusive, bool adaptive, const DenseTensor* input, DenseTensor* output) : OneDNNHandlerNoCachingT(dev_ctx.GetEngine(), dev_ctx.GetPlace()) { std::vector copied_kernel_size(kernel_size.GetData().begin(), kernel_size.GetData().end()); std::vector copied_strides(strides.begin(), strides.end()); std::vector copied_paddings(paddings.begin(), paddings.end()); // Only 2D pooling is supported now PADDLE_ENFORCE_EQ( copied_kernel_size.size(), 2, errors::InvalidArgument("The copied_kernel_size must be 2D, i.e. 2D " "pooling, but received %dD.", copied_kernel_size.size())); PADDLE_ENFORCE_EQ( pooling_type == "max" || pooling_type == "avg", true, errors::InvalidArgument( "The pooling_type must be 'max' or 'avg', but received %s.", pooling_type)); PADDLE_ENFORCE_EQ( input->dims().size(), 4, errors::InvalidArgument( "Input dim must be with 4, i.e. NCHW, but received %d.", input->dims().size())); const auto input_dims = input->dims(); DDim data_dims = slice_ddim(input_dims, 2, input_dims.size()); if (global_pooling) { UpdateKernelSize(&copied_kernel_size, data_dims); } UpdatePadding(&copied_paddings, global_pooling, 0, padding_algorithm, data_dims, copied_strides, copied_kernel_size); auto onednn_paddings = ToOneDNNPadding(copied_paddings); const auto dt = ToOneDNNDataType(input->dtype()); const auto src_tz = vectorize(input->dims()); const auto dst_tz = vectorize(output->dims()); const auto dst_md = OneDNNMemDesc(dst_tz, dt, OneDNNMemoryFormat::any); if (ceil_mode) { CorrectOutputSize(src_tz, dst_tz, copied_kernel_size, copied_paddings, copied_strides, onednn_paddings[1]); } if (adaptive) { ComputeAdaptivePoolParameters( src_tz, &copied_kernel_size, &copied_strides); } bool is_test = dev_ctx.HasDnnAttr("is_test") ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("is_test")) : false; this->AcquireForwardPrimitiveDescriptor( is_test ? dnnl::prop_kind::forward_inference : dnnl::prop_kind::forward_training, pooling_type == "max" ? dnnl::algorithm::pooling_max : (exclusive ? dnnl::algorithm::pooling_avg_exclude_padding : dnnl::algorithm::pooling_avg_include_padding), input->mem_desc(), dst_md, copied_strides, copied_kernel_size, onednn_paddings[0], onednn_paddings[1]); } PoolingOneDNNHandler(const OneDNNContext& dev_ctx, const std::string& pooling_type, const IntArray& kernel_size, const std::vector& strides, const std::vector& paddings, bool global_pooling, const std::string& padding_algorithm, bool ceil_mode, bool exclusive, bool adaptive, const DenseTensor* in_x, const DenseTensor* out_grad, DenseTensor* in_x_grad) : OneDNNHandlerNoCachingT(dev_ctx.GetEngine(), dev_ctx.GetPlace()) { bool is_test = dev_ctx.HasDnnAttr("is_test") ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("is_test")) : false; PADDLE_ENFORCE_EQ( is_test, false, errors::InvalidArgument( "is_test attribute should be set to False in training phase.")); std::vector copied_kernel_size(kernel_size.GetData().begin(), kernel_size.GetData().end()); std::vector copied_strides(strides.begin(), strides.end()); std::vector copied_paddings(paddings.begin(), paddings.end()); auto in_x_dims = in_x->dims(); DDim data_dims = slice_ddim(in_x_dims, 2, in_x_dims.size()); if (global_pooling) { UpdateKernelSize(&copied_kernel_size, data_dims); } UpdatePadding(&copied_paddings, global_pooling, 0, padding_algorithm, data_dims, copied_strides, copied_kernel_size); auto src_tz = vectorize(in_x->dims()); auto diff_src_tz = vectorize(in_x_grad->dims()); auto diff_dst_tz = vectorize(out_grad->dims()); const auto dt = ToOneDNNDataType(in_x->dtype()); auto dst_md = dnnl::memory::desc(diff_dst_tz, dt, OneDNNMemoryFormat::any); auto diff_src_md = dnnl::memory::desc( diff_src_tz, OneDNNGetDataType(), OneDNNMemoryFormat::any); auto onednn_paddings = ToOneDNNPadding(copied_paddings); if (ceil_mode) { CorrectOutputSize(src_tz, diff_dst_tz, copied_kernel_size, copied_paddings, copied_strides, onednn_paddings[1]); } if (adaptive) { ComputeAdaptivePoolParameters( diff_src_tz, &copied_kernel_size, &copied_strides); } this->AcquireForwardPrimitiveDescriptor( dnnl::prop_kind::forward_training, pooling_type == "max" ? dnnl::algorithm::pooling_max : (exclusive ? dnnl::algorithm::pooling_avg_exclude_padding : dnnl::algorithm::pooling_avg_include_padding), in_x->mem_desc(), dst_md, copied_strides, copied_kernel_size, onednn_paddings[0], onednn_paddings[1]); this->AcquireBackwardPrimitiveDescriptor( pooling_type == "max" ? dnnl::algorithm::pooling_max : (exclusive ? dnnl::algorithm::pooling_avg_exclude_padding : dnnl::algorithm::pooling_avg_include_padding), diff_src_md, out_grad->mem_desc(), copied_strides, copied_kernel_size, onednn_paddings[0], onednn_paddings[1]); } std::shared_ptr AcquireWorkspaceMemory( const OneDNNContext& dev_ctx, const std::string& unique_name) { dnnl::memory::desc workspace_md = this->fwd_pd_->workspace_desc(); // Pooling Workspace has to be passed to Grad op that // may be executed by diffrent thread, hence // for that one we use key that does not contain TID std::string workspace_key = CreateKey(dev_ctx, workspace_md.dims(), workspace_md.data_type(), unique_name, "@wrk"); auto mem_p = std::static_pointer_cast(dev_ctx.GetBlob(workspace_key)); if (mem_p == nullptr) { static std::mutex acquire_barrier; std::lock_guard block_threads_until_finish_this_job( acquire_barrier); mem_p = std::static_pointer_cast( dev_ctx.GetBlob(workspace_key)); if (mem_p == nullptr) { mem_p = std::make_shared(workspace_md, this->engine_); dev_ctx.SetBlob(workspace_key, mem_p); } } return mem_p; } static void ComputeAdaptivePoolParameters(const std::vector& src_tz, std::vector* kernel_size, std::vector* strides) { // https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling auto IH = static_cast(src_tz[src_tz.size() - 2]); auto IW = static_cast(src_tz[src_tz.size() - 1]); auto OH = static_cast(kernel_size->at(0)); auto OW = static_cast(kernel_size->at(1)); strides->at(0) = static_cast(floor((IH * 2.0) / OH) - floor(IH / OH)); strides->at(1) = static_cast(floor((IW * 2.0) / OW) - floor(IW / OW)); kernel_size->at(0) = static_cast(ceil((IH * 2.0) / OH) - floor(IH / OH)); kernel_size->at(1) = static_cast(ceil((IW * 2.0) / OW) - floor(IW / OW)); } private: static inline int ComputeCeiledOutput(int input_size, int kernel_size, int padding, int stride) { return (input_size - kernel_size + 2 * padding) / stride + 1; } static inline void CorrectOutputSize( const std::vector& src_tz, const std::vector& dst_tz, const std::vector& kernel_size, const std::vector& paddings, const std::vector& strides, std::vector& right_bot_padding) { // NOLINT for (size_t i = 0; i < right_bot_padding.size(); i++) { int desired_size = ComputeCeiledOutput( src_tz[i + 2], kernel_size[i], paddings[i], strides[i]); if (desired_size != dst_tz[i + 2]) { right_bot_padding[i] += strides[i] - 1; } } } }; } // namespace funcs } // namespace phi