// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/layer.h" #include #include #include #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/variable_helper.h" #include "paddle/fluid/imperative/prepared_operator.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { namespace imperative { using framework::Variable; void ThreadSafeNameSet::Insert(const std::string& name) { std::lock_guard guard(mtx_); set_.insert(name); } void ThreadSafeNameSet::Remove(const std::string& name) { std::lock_guard guard(mtx_); auto iter = set_.find(name); PADDLE_ENFORCE_EQ(iter != set_.end(), true, "%s does not exist", name); set_.erase(iter); } std::vector ThreadSafeNameSet::Names() const { std::lock_guard guard(mtx_); return std::vector(set_.begin(), set_.end()); } ThreadSafeNameSet VarBase::name_set_; std::vector VarBase::AliveVarNames() { return name_set_.Names(); } static framework::VariableNameMap CreateVarNameMap( const framework::OpInfo& op_info, const std::string& op_type, const NameVarBaseMap& varbase_map, bool is_input) { if (op_info.proto_ == nullptr) { framework::VariableNameMap result; for (auto& it : varbase_map) { auto& var_vector = it.second; std::vector args; args.reserve(var_vector.size()); for (auto& var_base : var_vector) { args.emplace_back(var_base->Name()); } result[it.first] = std::move(args); } return result; } framework::VariableNameMap result; for (auto& var : is_input ? op_info.Proto().inputs() : op_info.Proto().outputs()) { auto it = varbase_map.find(var.name()); if (it == varbase_map.end()) { PADDLE_ENFORCE_EQ( var.dispensable(), true, "Var: %s not dispensable and there are no such var in inputs", var.name()); result[var.name()] = {}; } else { auto& var_vector = it->second; std::vector args; args.reserve(var_vector.size()); for (auto& var_base : var_vector) { args.emplace_back(var_base->Name()); } result[var.name()] = std::move(args); } } return result; } static framework::RuntimeContext PrepareRuntimeContext( const NameVarBaseMap& ins, const NameVarBaseMap& outs) { framework::VariableValueMap inputs, outputs; for (auto& in_pair : ins) { auto& in_ctx = inputs[in_pair.first]; in_ctx.reserve(in_pair.second.size()); for (auto& in_var : in_pair.second) { in_ctx.emplace_back(in_var->MutableVar()); } } for (auto& out_pair : outs) { auto& out_ctx = outputs[out_pair.first]; out_ctx.reserve(out_pair.second.size()); for (auto& out_var : out_pair.second) { out_ctx.emplace_back(out_var->MutableVar()); } } return framework::RuntimeContext(std::move(inputs), std::move(outputs)); } static std::string DebugString( const std::string& name, const std::vector>& vars) { std::stringstream ss; ss << name << "{"; for (size_t i = 0; i < vars.size(); ++i) { if (i > 0) ss << ", "; if (vars[i] == nullptr) { ss << "NULL"; continue; } ss << vars[i]->Name() << "["; auto& var = vars[i]->Var(); if (!var.IsInitialized()) { ss << "NOT_INITED_VAR"; } else if (var.IsType()) { auto& tensor = var.Get(); ss << "LoDTensor<"; if (tensor.IsInitialized()) { ss << framework::DataTypeToString(tensor.type()) << ", "; ss << tensor.place() << ", "; ss << "(" << tensor.dims() << ")"; } else { ss << "NOT_INITED"; } ss << ">"; } else if (var.IsType()) { ss << "SelectedRows<"; auto& selected_rows = var.Get(); auto& tensor = selected_rows.value(); auto& rows = selected_rows.rows(); if (tensor.IsInitialized()) { ss << framework::DataTypeToString(tensor.type()) << ", "; ss << tensor.place() << ", "; ss << "height(" << selected_rows.height() << "), rows("; std::for_each(rows.cbegin(), rows.cend(), [&ss](const int64_t r) { ss << r << " "; }); ss << "), dims(" << tensor.dims() << ")"; } else { ss << "NOT_INITED"; } ss << ">"; } else { ss << "UNRESOLVED_TYPE"; } ss << "]"; } ss << "}"; return ss.str(); } std::string LayerDebugString(const std::string& op_type, const NameVarBaseMap& ins, const NameVarBaseMap& outs) { std::stringstream ss; ss << "Op(" << op_type << "): "; ss << "Inputs: "; size_t i = 0; for (auto& pair : ins) { if (i > 0) ss << ", "; ss << DebugString(pair.first, pair.second); ++i; } ss << ", Outputs: "; i = 0; for (auto& pair : outs) { if (i > 0) ss << ", "; ss << DebugString(pair.first, pair.second); ++i; } return ss.str(); } void VarBase::AddGradOps(const std::weak_ptr& op) { if (op.lock() == nullptr) { return; } for (const auto& cur_op : grad_ops_) { if (cur_op.lock() == op.lock()) { return; } } grad_ops_.emplace_back(op); } void VarBase::ClearGradient() { if (grad_var_) { if (grad_var_->var_.IsType()) { auto* grad_t = grad_var_->var_.GetMutable(); if (grad_t->mutable_value()->IsInitialized()) { grad_t->mutable_rows()->clear(); grad_t->mutable_value()->clear(); } } else { auto* grad_t = grad_var_->var_.GetMutable(); if (grad_t->IsInitialized()) { auto* dev_ctx = platform::DeviceContextPool::Instance().Get(grad_t->place()); operators::math::set_constant(*dev_ctx, grad_t, 0.0); } } } } std::shared_ptr VarBase::NewVarBase(const platform::Place& dst_place, const bool blocking) const { PADDLE_ENFORCE_EQ( var_.IsInitialized() && (var_.IsType() || var_.IsType()), true, platform::errors::InvalidArgument( "Variable is not initialized or Variable's type is not " "LoDTensor or SelectedRows when getting numpy tensor")); if (var_.IsType()) { auto& src_tensor = var_.Get(); // TODO(Jiabin): change this after move unique_name generator to CXX auto new_var = std::make_shared( true, Name() + std::to_string(copied_counter_++)); auto* dst_tensor = new_var->var_.GetMutable(); dst_tensor->set_lod(src_tensor.lod()); new_var->SetPersistable(Persistable()); new_var->SetDataType(DataType()); new_var->SetType(Type()); framework::TensorCopy(src_tensor, dst_place, dst_tensor); if (blocking) { platform::DeviceContextPool::Instance().Get(dst_place)->Wait(); auto src_place = src_tensor.place(); if (!(src_place == dst_place)) { platform::DeviceContextPool::Instance().Get(src_place)->Wait(); } } if (platform::is_gpu_place(dst_place)) { VLOG(3) << "copy tensor " << Name() << " from gpu"; } return new_var; } else { auto& src_selected_rows = var_.Get(); auto new_var = std::make_shared( false, "Itmp" + std::to_string(copied_counter_++)); new_var->SetType(framework::proto::VarType::SELECTED_ROWS); auto* dst_selected_rows = new_var->var_.GetMutable(); framework::TensorCopy(src_selected_rows.value(), dst_place, dst_selected_rows->mutable_value()); if (blocking) { platform::DeviceContextPool::Instance().Get(dst_place)->Wait(); auto src_place = src_selected_rows.place(); if (!(src_place == dst_place)) { platform::DeviceContextPool::Instance().Get(src_place)->Wait(); } } dst_selected_rows->set_height(src_selected_rows.height()); dst_selected_rows->set_rows(src_selected_rows.rows()); if (platform::is_gpu_place(dst_place)) { VLOG(3) << "copy selected rows " << Name() << " from gpu"; } return new_var; } } // create OpBase from optype OpBase::OpBase(size_t id, const std::string& type, const NameVarBaseMap& ins, const NameVarBaseMap& outs, const framework::AttributeMap& attrs, const platform::Place& place) : id_(id), place_(place), attrs_(attrs) { const auto& info = framework::OpInfoMap::Instance().Get(type); // Step 1: Run forward if (info.Checker() != nullptr) { info.Checker()->Check(&attrs_); } op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false); VLOG(3) << "Construct Op: " << type << std::endl; } void OpBase::CreateOperatorBase() { const auto& info = framework::OpInfoMap::Instance().Get(type_); if (info.Checker() != nullptr) { info.Checker()->Check(&attrs_); } op_ = framework::OpRegistry::CreateOp(type_, {}, {}, {}, false); } void OpBase::Run(const NameVarBaseMap& ins, const NameVarBaseMap& outs) { auto* op_kernel = dynamic_cast(op_.get()); PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel"); auto& info = op_->Info(); if (info.infer_var_type_) { RuntimeInferVarTypeContext infer_var_type_ctx(ins, &outs, attrs_); info.infer_var_type_(&infer_var_type_ctx); } // Initialize output var type for (auto& var_pair : outs) { for (auto& var : var_pair.second) { InitializeVariable(var->MutableVar(), var->Type()); } } VLOG(3) << "Running Op " << Type(); VLOG(5) << LayerDebugString(Type(), ins, outs); framework::RuntimeContext runtime_ctx({}, {}); auto prepared_op = PreparedOp::Prepare(ins, outs, *op_kernel, place(), &attrs_); prepared_op.Run(&ins, &outs, &attrs_); VLOG(4) << LayerDebugString(Type(), ins, outs); } void OpBase::ClearBackwardTrace() { grad_pending_ops_.clear(); ins_.clear(); outs_.clear(); } } // namespace imperative } // namespace paddle