# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid.core as core from paddle import Program, program_guard class TestRandnOp(unittest.TestCase): def test_api(self): shape = [1000, 784] train_program = Program() startup_program = Program() with program_guard(train_program, startup_program): x1 = paddle.randn(shape, 'float32') x2 = paddle.randn(shape, 'float64') dim_1 = paddle.fill_constant([1], "int64", 20) dim_2 = paddle.fill_constant([1], "int32", 50) x3 = paddle.randn([dim_1, dim_2, 784]) var_shape = paddle.nn.data('X', [2], 'int32') x4 = paddle.randn(var_shape) place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda( ) else paddle.CPUPlace() exe = paddle.Executor(place) res = exe.run(train_program, feed={'X': np.array( shape, dtype='int32')}, fetch_list=[x1, x2, x3, x4]) for out in res: self.assertAlmostEqual(np.mean(out), .0, delta=0.1) self.assertAlmostEqual(np.std(out), 1., delta=0.1) class TestRandnOpForDygraph(unittest.TestCase): def test_api(self): shape = [1000, 784] place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda( ) else paddle.CPUPlace() with paddle.imperative.guard(place): x1 = paddle.randn(shape, 'float32') x2 = paddle.randn(shape, 'float64') dim_1 = paddle.fill_constant([1], "int64", 20) dim_2 = paddle.fill_constant([1], "int32", 50) x3 = paddle.randn(shape=[dim_1, dim_2, 784]) var_shape = paddle.imperative.to_variable(np.array(shape)) x4 = paddle.randn(var_shape) for out in [x1, x2, x3, x4]: self.assertAlmostEqual(np.mean(out.numpy()), .0, delta=0.1) self.assertAlmostEqual(np.std(out.numpy()), 1., delta=0.1) class TestRandnOpError(unittest.TestCase): def test_error(self): with program_guard(Program(), Program()): # The argument shape's size of randn_op should not be 0. self.assertRaises(AssertionError, paddle.randn, []) # The argument shape's type of randn_op should be list or tuple. self.assertRaises(TypeError, paddle.randn, 1) # The argument dtype of randn_op should be float32 or float64. self.assertRaises(TypeError, paddle.randn, [1, 2], 'int32') if __name__ == "__main__": unittest.main()