# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import numpy as np import unittest import paddle.nn.functional as F from test_sparse_attention_op import get_cuda_version class BF16EmbeddingTest(unittest.TestCase): def setUp(self): self.batch_size = 30 self.vocab_size = 1024 self.hidden_size = 512 self.seed = 10 def run_main(self, dtype): ids, weight, dout = self.gen_random() origin_dtype = weight.dtype weight_cast = weight.astype(dtype) out = F.embedding(ids, weight_cast) dout = dout.astype(out.dtype) dweight = paddle.autograd.grad(out, weight, dout) return ( out.astype(origin_dtype).numpy(), dweight[0].astype(origin_dtype).numpy(), ) def gen_random(self): np.random.seed(self.seed) weight = np.random.random([self.vocab_size, self.hidden_size]).astype( 'float32' ) ids = np.random.randint( low=0, high=self.vocab_size, size=[self.batch_size] ) dout = np.random.random([self.batch_size, self.hidden_size]).astype( 'float32' ) weight = paddle.to_tensor(weight) weight.stop_gradient = False ids = paddle.to_tensor(ids) dout = paddle.to_tensor(dout) return ids, weight, dout def test_main(self): if not paddle.is_compiled_with_cuda() or get_cuda_version() < 11000: return ret1 = self.run_main('float32') ret2 = self.run_main('bfloat16') self.assertEqual(len(ret1), len(ret2)) for i, (r1, r2) in enumerate(zip(ret1, ret2)): np.testing.assert_allclose(r1, r2, atol=1e-3, rtol=1e-2) class BF16EmbeddingTestOddHiddenSize(BF16EmbeddingTest): def setUp(self): self.batch_size = 30 self.vocab_size = 511 self.hidden_size = 512 self.seed = 20 if __name__ == "__main__": unittest.main()