# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import unittest import numpy as np import six import sys import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.optimizer import AdamOptimizer from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC from test_imperative_base import new_program_scope from paddle.fluid.imperative.base import to_variable def gen_data(): pass class GraphConv(fluid.imperative.Layer): def __init__(self, name_scope, in_features, out_features): super(GraphConv, self).__init__(name_scope) self._in_features = in_features self._out_features = out_features self.weight = self.create_parameter( attr=None, dtype='float32', shape=[self._in_features, self._out_features]) self.bias = self.create_parameter( attr=None, dtype='float32', shape=[self._out_features]) def forward(self, features, adj): support = fluid.layers.matmul(features, self.weight) # TODO(panyx0718): sparse matmul? return fluid.layers.matmul(adj, support) + self.bias class GCN(fluid.imperative.Layer): def __init__(self, name_scope, num_hidden): super(GCN, self).__init__(name_scope) self.gc = GraphConv(self.full_name(), num_hidden, 32) self.gc2 = GraphConv(self.full_name(), 32, 10) def forward(self, x, adj): x = fluid.layers.relu(self.gc(x, adj)) return self.gc2(x, adj) class TestImperativeGNN(unittest.TestCase): def test_gnn_float32(self): seed = 90 startup = fluid.Program() startup.random_seed = seed main = fluid.Program() main.random_seed = seed scope = fluid.core.Scope() with new_program_scope(main=main, startup=startup, scope=scope): features = fluid.layers.data( name='features', shape=[1, 100, 50], dtype='float32', append_batch_size=False) # Use selected rows when it's supported. adj = fluid.layers.data( name='adj', shape=[1, 100, 100], dtype='float32', append_batch_size=False) labels = fluid.layers.data( name='labels', shape=[100, 1], dtype='int64', append_batch_size=False) model = GCN('test_gcn', 50) logits = model(features, adj) logits = fluid.layers.reshape(logits, logits.shape[1:]) # In other example, it's nll with log_softmax. However, paddle's # log_loss only supports binary classification now. loss = fluid.layers.softmax_with_cross_entropy(logits, labels) loss = fluid.layers.reduce_sum(loss) adam = AdamOptimizer(learning_rate=1e-3) adam.minimize(loss) exe = fluid.Executor(fluid.CPUPlace( ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)) exe.run(startup) static_loss = exe.run(feed={ 'features': np.zeros( [1, 100, 50], dtype=np.float32), 'adj': np.zeros( [1, 100, 100], dtype=np.float32), 'labels': np.zeros( [100, 1], dtype=np.int64) }, fetch_list=[loss])[0] static_weight = np.array( scope.find_var(model.gc.weight.name).get_tensor()) with fluid.imperative.guard(): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed features = np.zeros([1, 100, 50], dtype=np.float32) # Use selected rows when it's supported. adj = np.zeros([1, 100, 100], dtype=np.float32) labels = np.zeros([100, 1], dtype=np.int64) model = GCN('test_gcn', 50) logits = model(to_variable(features), to_variable(adj)) logits = fluid.layers.reshape(logits, logits.shape[1:]) # In other example, it's nll with log_softmax. However, paddle's # log_loss only supports binary classification now. loss = fluid.layers.softmax_with_cross_entropy(logits, to_variable(labels)) loss = fluid.layers.reduce_sum(loss) adam = AdamOptimizer(learning_rate=1e-3) adam.minimize(loss) self.assertEqual(static_loss, loss._numpy()) self.assertTrue( np.allclose(static_weight, model.gc.weight._numpy())) sys.stderr.write('%s %s\n' % (static_loss, loss._numpy())) if __name__ == '__main__': unittest.main()