import os import sys import gzip import logging import argparse from PIL import Image import numpy as np import paddle.v2 as paddle from paddle.utils.dump_v2_config import dump_v2_config logger = logging.getLogger("paddle") logger.setLevel(logging.INFO) def multilayer_perceptron(img, layer_size, lbl_dim): for idx, size in enumerate(layer_size): hidden = paddle.layer.fc(input=(img if not idx else hidden), size=size, act=paddle.activation.Relu()) return paddle.layer.fc(input=hidden, size=lbl_dim, act=paddle.activation.Softmax()) def network(input_dim=784, lbl_dim=10, is_infer=False): images = paddle.layer.data( name='pixel', type=paddle.data_type.dense_vector(input_dim)) predict = multilayer_perceptron( images, layer_size=[128, 64], lbl_dim=lbl_dim) if is_infer: return predict else: label = paddle.layer.data( name='label', type=paddle.data_type.integer_value(lbl_dim)) return paddle.layer.classification_cost(input=predict, label=label) def main(task="train", use_gpu=False, trainer_count=1, save_dir="models"): if task == "train": if not os.path.exists(save_dir): os.mkdir(save_dir) paddle.init(use_gpu=use_gpu, trainer_count=trainer_count) cost = network() parameters = paddle.parameters.create(cost) optimizer = paddle.optimizer.Momentum( learning_rate=0.1 / 128.0, momentum=0.9, regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128)) trainer = paddle.trainer.SGD(cost=cost, parameters=parameters, update_equation=optimizer) def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: logger.info("Pass %d, Batch %d, Cost %f, %s" % (event.pass_id, event.batch_id, event.cost, event.metrics)) if isinstance(event, paddle.event.EndPass): with gzip.open( os.path.join(save_dir, "params_pass_%d.tar" % event.pass_id), "w") as f: trainer.save_parameter_to_tar(f) trainer.train( reader=paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), batch_size=128), event_handler=event_handler, num_passes=5) elif task == "dump_config": predict = network(is_infer=True) dump_v2_config(predict, "trainer_config.bin", True) else: raise RuntimeError(("Error value for parameter task. " "Available options are: train and dump_config.")) def parse_cmd(): parser = argparse.ArgumentParser( description="PaddlePaddle MNIST demo for CAPI.") parser.add_argument( "--task", type=str, required=False, help=("A string indicating the taks type. " "Available options are: \"train\", \"dump_config\"."), default="train") parser.add_argument( "--use_gpu", type=bool, help=("A bool flag indicating whether to use GPU device or not."), default=False) parser.add_argument( "--trainer_count", type=int, help=("This parameter is only used in training task. It indicates " "how many computing threads are created in training."), default=1) parser.add_argument( "--save_dir", type=str, help=("This parameter is only used in training task. It indicates " "path of the directory to save the trained models."), default="models") return parser.parse_args() if __name__ == "__main__": args = parse_cmd() main(args.task, args.use_gpu, args.trainer_count, args.save_dir)