/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/memory/memory.h" #include #include #include #include namespace paddle { namespace framework { std::ostream &operator<<(std::ostream &os, const LoD &lod) { os << "{"; for (auto &v : lod) { os << "{"; for (auto &i : v) { os << i << ","; } os << "}"; } os << "}"; return os; } std::ostream &operator<<(std::ostream &os, const LoDTensor &t) { PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code()); if (!platform::is_cpu_place(t.place())) { LoDTensor tt; framework::Copy(t, platform::CPUPlace(), &tt); platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto &dev_ctx = *pool.Get(t.place()); dev_ctx.Wait(); os << tt; return os; } os << "dim: " << t.dims() << "\n"; os << "lod: " << t.lod() << "\n"; // only print first ten elements int64_t size = t.numel() < 10 ? t.numel() : 10; for (int64_t i = 0; i < size; ++i) { os << t.data()[i] << " "; } return os; } std::string LoDToString(const LoD &lod) { std::ostringstream stream; stream << lod; return stream.str(); } LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin, size_t elem_end) { PADDLE_ENFORCE_LT(level, in.size()); PADDLE_ENFORCE_LT(elem_end, in[level].size()); LoD res; res.resize(in.size() - level); // copy the first level res[0].assign(in[level].begin() + elem_begin, in[level].begin() + elem_end + 1); for (size_t lvl = 1; lvl < res.size(); lvl++) { const auto &in_level = in[level + lvl]; const auto &above_level = res[lvl - 1]; auto &out_level = res[lvl]; out_level.assign(in_level.begin() + above_level.front(), in_level.begin() + above_level.back() + 1); } for (size_t lvl = 0; lvl < res.size(); lvl++) { // to make the first offset equals 0, all the elements minus the first // element size_t front = res[lvl].front(); for (auto &ele : res[lvl]) { ele -= front; } } return res; } LoD ToAbsOffset(const LoD &in) { // the lowest level stores relative offsets if (in.empty() || in.size() == 1) return in; LoD result = in; for (auto level = static_cast(in.size() - 2); level >= 0; level--) { for (size_t i = 0; i < in[level].size(); ++i) { size_t index = in[level][i]; result[level][i] = result[level + 1][index]; } } return result; } bool operator==(const LoD &a, const LoD &b) { if (a.size() != b.size()) { return false; } for (size_t i = 0; i < a.size(); i++) { const auto &a_level = a[i]; const auto &b_level = b[i]; if (a_level.size() != b_level.size()) { return false; } for (size_t j = 0; j < a_level.size(); j++) { if (a_level[j] != b_level[j]) { return false; } } } return true; } bool CheckLoD(const LoD &in, int tensor_height) { if (in.empty()) return true; for (const auto &level : in) { // check: there should be more than 2 offsets existing in each level. if (level.size() < 2) return false; // check: the first offset(the begin offset) of each level should be 0. if (level.front() != 0) return false; // check: all the offsets in a level should be ascending(no same items // allows). if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) { if (a < b) return true; return false; })) { LOG(INFO) << "ascending error"; return false; } } // check: the lowest level's last offset should equals `tensor_height` if // tensor_height>0. if (tensor_height > 0 && (size_t)tensor_height != in.back().back()) return false; // check: the higher level's last offset should equals the lower level's // size-1. // NOTE LoD store the levels from top to bottom, so the higher level goes // first. for (size_t level = 0; level < in.size() - 1; level++) { if (in[level].back() != in[level + 1].size() - 1) return false; } return true; } bool CheckAbsLoD(const LoD &in, int tensor_height) { if (in.empty()) return true; for (const auto &level : in) { // check: all the offsets in a level should be ascending(no same items // allows). if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) { if (a < b) return true; return false; })) { return false; } // check: there should be more than 2 offsets existing in each level. if (level.size() < 2) return false; // check: the first offset of each level should be 0, and the last should be // the same(the height of underlying tensor). if (level.front() != 0) return false; if (tensor_height < 0) { tensor_height = level.back(); } else if ((size_t)tensor_height != level.back()) { return false; } } return true; } using LoDAndOffset = std::pair>; LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx, size_t end_idx, size_t start_level) { LoD sub_lod; for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) { PADDLE_ENFORCE_LE(start_idx, end_idx); PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size()); std::vector level_lens; for (size_t i = start_idx; i < end_idx; ++i) { level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]); } sub_lod.emplace_back(level_lens); start_idx = lod[level_idx][start_idx]; end_idx = lod[level_idx][end_idx]; } return LoDAndOffset{sub_lod, {start_idx, end_idx}}; } void AppendLoD(LoD *lod, const LoD &lod_length) { PADDLE_ENFORCE( lod->empty() || lod->size() == lod_length.size(), "The lod_length should has the same size with the appended lod."); if (lod->empty()) { for (size_t i = 0; i < lod_length.size(); ++i) { lod->emplace_back(1, 0); // size = 1, value = 0; } *lod = LoD(lod_length.size(), std::vector({0})); } for (size_t i = 0; i < lod->size(); ++i) { auto &level = (*lod)[i]; for (size_t len : lod_length[i]) { level.push_back(level.back() + len); } } } void SerializeToStream(std::ostream &os, const LoDTensor &tensor, const platform::DeviceContext &dev_ctx) { { // the 1st field, uint32_t version for LoDTensor constexpr uint32_t version = 0; os.write(reinterpret_cast(&version), sizeof(version)); } { // the 2st field, LoD information // uint64_t lod_level // uint64_t lod_level_1 size in byte. // int* lod_level_1 data // ... auto lod = tensor.lod(); uint64_t size = lod.size(); os.write(reinterpret_cast(&size), sizeof(size)); for (auto &each : lod) { size = each.size() * sizeof(framework::LoD::value_type::value_type); os.write(reinterpret_cast(&size), sizeof(size)); os.write(reinterpret_cast(each.data()), static_cast(size)); } } // the 3st field, Tensor SerializeToStream(os, static_cast(tensor), dev_ctx); } void DeserializeFromStream(std::istream &is, LoDTensor *tensor, const platform::DeviceContext &dev_ctx) { { // the 1st field, unit32_t version for LoDTensor uint32_t version; is.read(reinterpret_cast(&version), sizeof(version)); PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); } { // the 2st field, LoD information uint64_t lod_level; is.read(reinterpret_cast(&lod_level), sizeof(lod_level)); auto &lod = *tensor->mutable_lod(); lod.resize(lod_level); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::vector tmp(size / sizeof(size_t)); is.read(reinterpret_cast(tmp.data()), static_cast(size)); lod[i] = tmp; } } // the 3st filed, Tensor DeserializeFromStream(is, static_cast(tensor), dev_ctx); } std::vector LoDTensor::SplitLoDTensor( const std::vector places) const { check_memory_size(); int batch_size = lod().empty() ? dims()[0] : static_cast(lod()[0].size()) - 1; size_t result_size = std::min(static_cast(batch_size), places.size()); size_t remainder = batch_size % places.size(); std::vector results; results.reserve(result_size); int step_width = static_cast(batch_size / result_size); for (size_t i = 0; i < result_size; ++i) { int begin = static_cast(i * step_width); int end = static_cast((i + 1) * step_width); if (i + 1 == places.size()) { // last end += remainder; } LoDTensor dst; if (lod().empty()) { auto src = Slice(begin, end); auto &dst_place = places[i]; framework::Copy(src, dst_place, &dst); } else { auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0); auto &offset = lod_and_offset.second; auto src = Slice(offset.first, offset.second); auto &dst_place = places[i]; framework::Copy(src, dst_place, &dst); LoD my_lod; for (auto &l : lod_and_offset.first) { std::vector v{0}; for (auto &ll : l) { v.push_back(ll + v.back()); } my_lod.emplace_back(v); } dst.set_lod(my_lod); } results.emplace_back(dst); } return results; } void LoDTensor::MergeLoDTensor( const std::vector &lod_tensors, platform::Place dst_place) { PADDLE_ENFORCE(!lod_tensors.empty()); framework::DDim new_dim = lod_tensors[0]->dims(); std::type_index new_type = lod_tensors[0]->type(); framework::DataLayout new_layout = lod_tensors[0]->layout(); LoD new_lod = lod_tensors[0]->lod(); for (size_t i = 1; i < lod_tensors.size(); ++i) { auto *t = lod_tensors[i]; PADDLE_ENFORCE_EQ(new_type.hash_code(), t->type().hash_code()); PADDLE_ENFORCE_EQ(new_layout, t->layout()); PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0], framework::product(t->dims()) / t->dims()[0]); new_dim[0] += t->dims()[0]; auto &lod = t->lod(); for (size_t j = 0; j < lod.size(); ++j) { auto &sub_lod = new_lod[j]; auto &offset = sub_lod.back(); for (size_t k = 1; k < lod[j].size(); ++k) { sub_lod.push_back(lod[j][k] + offset); } } } Resize(new_dim); set_layout(new_layout); set_lod(new_lod); mutable_data(dst_place, new_type); int begin = 0; for (auto *src : lod_tensors) { int end = begin + src->dims()[0]; auto dst = Slice(begin, end); framework::Copy(*src, dst_place, &dst); begin = end; } } } // namespace framework } // namespace paddle