// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once // clang-format off #include "paddle/fluid/framework/python_headers.h" // clang-format on #include // NOLINT #include // NOLINT #include // NOLINT #include // NOLINT #include "paddle/fluid/framework/op_desc.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/var_desc.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/imperative/type_defs.h" namespace paddle { namespace imperative { class VarBase; namespace py = ::pybind11; class PreparedOp { public: PreparedOp(const framework::OperatorBase& op, const framework::RuntimeContext& ctx, framework::OperatorWithKernel::OpKernelFunc func, platform::DeviceContext* dev_ctx, std::vector* kernel_configs) : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx), kernel_configs(kernel_configs) {} static PreparedOp Prepare(const framework::RuntimeContext& ctx, const framework::OperatorWithKernel& op, const platform::Place& place) { platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.Get(place); // check if op[type] has kernel registered. auto& all_op_kernels = op.AllOpKernels(); auto kernels_iter = all_op_kernels.find(op.Type()); if (kernels_iter == all_op_kernels.end()) { PADDLE_THROW( "There are no kernels which are registered in the %s operator.", op.Type()); } framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second; auto expected_kernel_key = op.GetExpectedKernelType(framework::ExecutionContext( op, framework::Scope(), *dev_ctx, ctx, nullptr)); VLOG(3) << "expected_kernel_key:" << expected_kernel_key; auto kernel_iter = kernels.find(expected_kernel_key); #ifdef PADDLE_WITH_MKLDNN // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set if (kernel_iter == kernels.end() && expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) { VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one"; expected_kernel_key.library_type_ = framework::LibraryType::kPlain; expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout; kernel_iter = kernels.find(expected_kernel_key); } #endif if (kernel_iter == kernels.end()) { PADDLE_THROW("op %s does not have kernel for %s", op.Type(), KernelTypeToString(expected_kernel_key)); } std::vector* kernel_configs = op.GetKernelConfig(expected_kernel_key); return PreparedOp(op, ctx, kernel_iter->second, dev_ctx, kernel_configs); } inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; } const framework::OperatorBase& op; const framework::RuntimeContext& ctx; framework::OperatorWithKernel::OpKernelFunc func; platform::DeviceContext* dev_ctx; std::vector* kernel_configs; }; class OpBase; /* The wrapper for Variable which holds a Variable and a VarBase of its * gradient. This object should be managed totally by Python intepreter. * * Nearly all interface should be implemented in C++. */ class VarBase { public: // Internal interface, create VarBase from exist variable VarBase(const std::string& name, framework::Variable* var, VarBase* grad, bool stop_gradient) : VarBase(name, var->Get().type(), var->Get().dims(), var->Get().place(), var, grad, stop_gradient, false) {} // Python interface VarBase(const std::string& name, const framework::proto::VarType::Type dtype, const std::vector& shape, const platform::Place& place, bool stop_gradient, bool persistable) : VarBase(name, dtype, framework::make_ddim(shape), place, stop_gradient, persistable) {} // Internal interface, create VarBase from with ddim VarBase(const std::string& name, const framework::proto::VarType::Type dtype, const framework::DDim& shape, const platform::Place& place, bool stop_gradient, bool persistable) : VarBase(name, dtype, shape, place, nullptr, nullptr, stop_gradient, persistable) {} private: VarBase(const std::string& name, framework::proto::VarType::Type dtype, const framework::DDim& shape, const platform::Place& place, framework::Variable* var, VarBase* grad, bool stop_gradient, bool persistable) : name_(name), dtype_(dtype), place_(place), var_(var), grads_(grad), stop_gradient_(stop_gradient), persistable_(persistable), pre_op_(nullptr), pre_op_out_name_(), pre_op_out_idx_(-1) { if (!var_) { var_ = new framework::Variable(); auto tensor = var_->GetMutable(); tensor->Resize(shape); tensor->mutable_data(place_, dtype_); } } public: virtual ~VarBase() { if (var_) { delete var_; var_ = nullptr; } if (grads_) { delete grads_; grads_ = nullptr; } pre_op_ = nullptr; pre_op_out_idx_ = -1; } inline void SetName(const std::string& name) { name_ = name; } inline std::string Name() const { return name_; } inline std::vector Shape() const { if (var_->IsInitialized()) { return framework::vectorize(var_->Get().dims()); } else { return {}; } } inline framework::proto::VarType::Type DType() const { return dtype_; } inline void SetStopGradient(bool stop_gradient) { stop_gradient_ = stop_gradient; } inline bool IsStopGradient() const { return stop_gradient_; } inline void SetPersistable(bool persistable) { persistable_ = persistable; } inline bool IsPersistable() const { return persistable_; } inline OpBase* PreOp() const { return pre_op_; } inline int PreOpOutIdx() const { return pre_op_out_idx_; } void RunBackward(); inline void ResetPreOp(OpBase* op) { if (op == pre_op_) { // clear pre_op info when op equals to var's pre_op pre_op_ = nullptr; pre_op_out_idx_ = -1; } } void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name, int pre_op_out_idx, bool pre_op_stop_gradient) { pre_op_ = pre_op; pre_op_out_name_ = pre_op_out_name; pre_op_out_idx_ = pre_op_out_idx; if (pre_op_stop_gradient) { stop_gradient_ = pre_op_stop_gradient; } } void ClearGradient() { VLOG(1) << "clear gradient of " << Name(); if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) { auto grads_t = grads_->var_->GetMutable(); operators::math::set_constant( *(platform::DeviceContextPool::Instance().Get( grads_->var_->Get().place())), grads_t, 0.0); } } framework::LoDTensor& GradValue(); std::unique_ptr NewVarBase(const platform::Place& dst_place, const bool blocking) const; inline std::string GradName() const { return string::Sprintf("%s@IGrad", Name()); } std::string name_; framework::proto::VarType::Type dtype_; platform::Place place_; framework::Variable* var_; VarBase* grads_; private: bool stop_gradient_; bool persistable_; OpBase* pre_op_; std::string pre_op_out_name_; int pre_op_out_idx_; }; /* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its * gradient. This object should be managed totally by Python intepreter. */ class PYBIND11_HIDDEN OpBase { public: OpBase(const std::string& type) : type_(type), trace_id_(-1), forward_id_(-1), backward_id_(-1), place_(platform::CPUPlace()), backward_hooks_() {} virtual ~OpBase() { // TODO(minqiyang): remove op_desc from block_desc in tracer // // reset all output vars' pre op for (auto iter : output_vars_) { for (VarBase* var : iter.second) { var->ResetPreOp(this); } } // release resource for (framework::OpDesc* desc : grad_op_descs_) { delete desc; } } std::map> ApplyGrad(); inline std::string Type() const { return type_; } inline std::string GradOpType(size_t index) const { PADDLE_ENFORCE_NOT_NULL(grad_op_descs_[index]); return grad_op_descs_[index]->Type(); } void RegisterBackwardHooks(const py::object& callable); void InvokeBackwardHooks(); void TrackPreOp(const VarBase* inp_var, const std::string& inp_name) { if (inp_var->PreOp() && !inp_var->IsStopGradient()) { VLOG(3) << "add pre op " << inp_var->PreOp()->Type() << " in slot " << inp_name; pre_ops_[inp_name].push_back(inp_var->PreOp()); pre_ops_out_idx_[inp_name].push_back(inp_var->PreOpOutIdx()); } else { VLOG(3) << "no pre op in slot " << inp_name << " input var stop_gradient: " << inp_var->IsStopGradient(); pre_ops_[inp_name].push_back(nullptr); // pre_ops_out_idx_[inp_name].push_back(-1); } } std::string type_; // One of `trace_id_` or `forward_id_` is set, not both. // For pure python PyLayer, use `forward_id_`, otherwise, use trace_id_. int trace_id_; int forward_id_; // When has backward, one of `grad_op_descs_` or `backward_id_` is set, // not both. // Note: each fwd op corresponds to a vector of bwd ops. std::vector grad_op_descs_; int backward_id_; platform::Place place_; VarBasePtrMap input_vars_; VarBasePtrMap output_vars_; OpBasePtrMap pre_ops_; std::map> pre_ops_out_idx_; // Inputs to a vector of bwd ops. std::vector grad_input_vars_; // Outputs to a vector of bwd ops. std::vector grad_output_vars_; std::vector backward_hooks_; }; class Layer { public: virtual ~Layer() {} virtual std::vector Forward(const std::vector& inputs) { std::vector vars; return vars; } }; class PyLayer { public: virtual ~PyLayer() {} static const char* kFwdInp; static const char* kFwdOut; static void RegisterFunc(int func_id, const py::object& py_func); static int NumFuncs(); static std::vector Apply( int func_id, const std::vector& inputs); static std::vector ApplyGrad( int func_id, const std::vector& inputs); private: static std::vector CallPythonFunc( const py::object& callable, const std::vector& ins); }; } // namespace imperative } // namespace paddle