// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/pten/api/ext/dispatch.h" #include "paddle/pten/infermeta/unary.h" #include "paddle/pten/kernels/cuda/manipulation.h" #include "paddle/pten/kernels/cuda/utils.h" #include "paddle/pten/kernels/hybird/cuda/cast_kernel_impl.h" #include "paddle/pten/kernels/hybird/general/manipulation.h" namespace pten { template void Flatten(const CUDAContext& dev_ctx, const DenseTensor& x, int start_axis, int stop_axis, DenseTensor* out) { auto out_dims = out->dims(); pten::Copy(dev_ctx, x, false, out); out->Resize(out_dims); } // TODO(yuanrisheng): this kernel is for training and xshape is a Intermediate // Output Tensor, // is there a more flexible way to deal with this case? template void FlattenWithXShape(const CUDAContext& dev_ctx, const DenseTensor& x, int start_axis, int stop_axis, DenseTensor* out, DenseTensor* xshape) { Flatten(dev_ctx, x, start_axis, stop_axis, out); general::SetXShape(x, xshape); } void Reshape(const CUDAContext& dev_ctx, const DenseTensor& x, const ScalarArray& shape, DenseTensor* out) { auto out_meta = InferMetaFromVecValue(x.meta(), shape.GetData()); if (x.data() == out->data() && x.numel() == out->numel()) { out->Resize(out_meta.dims); return; } pten::Copy(dev_ctx, x, false, out); out->Resize(out_meta.dims); out->ResetLoD(x.lod()); } void ReshapeWithXShape(const CUDAContext& dev_ctx, const DenseTensor& x, const ScalarArray& shape, DenseTensor* xshape, DenseTensor* out) { general::SetXShape(x, xshape); Reshape(dev_ctx, x, shape, out); } template void Cast(const CUDAContext& dev_ctx, const DenseTensor& x, DataType out_dtype, DataType in_dtype, DenseTensor* out) { PD_VISIT_ALL_TYPES(out_dtype, "CastKernelImpl", ([&] { detail::CastCUDAKernelImpl(dev_ctx, x, out); })); } } // namespace pten using float16 = paddle::platform::float16; PT_REGISTER_KERNEL(flatten, CUDA, ALL_LAYOUT, pten::Flatten, float, float16, double, uint8_t, int8_t, int, int64_t) {} PT_REGISTER_KERNEL(flatten_with_xshape, CUDA, ALL_LAYOUT, pten::FlattenWithXShape, float, double, uint8_t, int8_t, int, int64_t) {} #define PTEN_REGISTER_CAST_CUDA_BASE_TYPE(op_name, ...) \ PT_REGISTER_KERNEL(cast, \ CUDA, \ ALL_LAYOUT, \ pten::Cast, \ float, \ double, \ int, \ int64_t, \ int16_t, \ bool, \ uint8_t, \ paddle::platform::float16, \ paddle::platform::complex, \ paddle::platform::complex, \ ##__VA_ARGS__) { \ kernel->OutputAt(0).SetDataType( \ paddle::experimental::DataType::UNDEFINED); \ } #if !defined(PADDLE_WITH_HIP) PTEN_REGISTER_CAST_CUDA_BASE_TYPE(cast, paddle::platform::bfloat16) #else PTEN_REGISTER_CAST_CUDA_BASE_TYPE(cast) #endif PT_REGISTER_NO_TEMPLATE_KERNEL(reshape, CUDA, ANY, pten::Reshape, ALL_DTYPE) {} PT_REGISTER_NO_TEMPLATE_KERNEL( reshape_with_xshape, CUDA, ANY, pten::ReshapeWithXShape, ALL_DTYPE) {}