# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest def AffineGrid(theta, size): n = size[0] h = size[2] w = size[3] h_idx = np.repeat( np.linspace(-1, 1, h)[np.newaxis, :], w, axis=0).T[:, :, np.newaxis] w_idx = np.repeat( np.linspace(-1, 1, w)[np.newaxis, :], h, axis=0)[:, :, np.newaxis] grid = np.concatenate( [w_idx, h_idx, np.ones([h, w, 1])], axis=2) # h * w * 3 grid = np.repeat(grid[np.newaxis, :], size[0], axis=0) # n * h * w *3 ret = np.zeros([n, h * w, 2]) theta = theta.transpose([0, 2, 1]) for i in range(len(theta)): ret[i] = np.dot(grid[i].reshape([h * w, 3]), theta[i]) return ret.reshape([n, h, w, 2]).astype("float32") def getGridPointValue(data, x, y): data_shape = data.shape N = data_shape[0] H = data_shape[2] W = data_shape[3] out = np.zeros(data_shape, dtype='float') for i in range(N): for j in range(H): for k in range(W): if y[i, j, k] < 0 or y[i, j, k] > H - 1 or x[i, j, k] < 0 or x[ i, j, k] > W - 1: out[i, :, j, k] = 0 else: out[i, :, j, k] = data[i, :, y[i, j, k], x[i, j, k]] return out def GridSampler(data, grid): dims = data.shape N = dims[0] C = dims[1] H = dims[2] W = dims[3] x = grid[:, :, :, 0] y = grid[:, :, :, 1] y_max = H - 1 x_max = W - 1 x = 0.5 * ((x.astype('float32') + 1.0) * x_max) y = 0.5 * ((y.astype('float32') + 1.0) * y_max) x0 = np.floor(x).astype('int32') x1 = x0 + 1 y0 = np.floor(y).astype('int32') y1 = y0 + 1 wa = np.tile(((x1 - x) * (y1 - y)).reshape((N, 1, H, W)), (1, C, 1, 1)) wb = np.tile(((x1 - x) * (y - y0)).reshape((N, 1, H, W)), (1, C, 1, 1)) wc = np.tile(((x - x0) * (y1 - y)).reshape((N, 1, H, W)), (1, C, 1, 1)) wd = np.tile(((x - x0) * (y - y0)).reshape((N, 1, H, W)), (1, C, 1, 1)) va = getGridPointValue(data, x0, y0) vb = getGridPointValue(data, x0, y1) vc = getGridPointValue(data, x1, y0) vd = getGridPointValue(data, x1, y1) out = (wa * va + wb * vb + wc * vc + wd * vd).astype('float32') return out class TestGridSamplerOp(OpTest): def setUp(self): self.initTestCase() self.op_type = 'grid_sampler' x = np.random.randint(0, 255, self.x_shape).astype('float32') theta = np.zeros(self.theta_shape).astype('float32') for i in range(self.theta_shape[0]): for j in range(2): for k in range(3): theta[i, j, k] = np.random.rand(1)[0] grid = AffineGrid(theta, self.x_shape) self.inputs = {'X': x, 'Grid': grid} self.attrs = {'use_cudnn': True} self.outputs = {'Output': GridSampler(x, grid)} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Grid'], 'Output', max_relative_error=0.61) def initTestCase(self): self.x_shape = (2, 5, 7, 3) self.grid_shape = (2, 7, 3, 2) self.theta_shape = (2, 2, 3) if __name__ == "__main__": unittest.main()