# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import json import logging import numbers import os import random import numpy as np import paddle import paddle.distributed.auto_parallel.static.utils as auto_utils from paddle import static, utils from paddle.distributed import fleet from paddle.fluid.executor import _to_name_str from paddle.framework import IrGraph from paddle.framework import _current_expected_place as _get_device from paddle.framework import core, in_dynamic_mode from paddle.metric import Metric from paddle.static import InputSpec, Operator, Variable, global_scope from ...utils.log_utils import get_logger from ..interface import CollectionNames, fetch, get_collection from ..strategy import Strategy from .callbacks import config_callbacks from .cluster import Cluster, get_default_cluster from .converter import Converter from .cost.estimate_cost import get_cost_from_engine from .dist_context import DistributedContext, get_default_distributed_context from .dist_loader import ( DistributedDataLoader, DistributedDataLoaderFromGenerator, ) from .dist_op import DistributedOperator from .dist_saver import DistributedSaver from .helper import ProgramHelper from .parallelizer_v2 import Parallelizer from .planner_v2 import Planner from .process_group import get_all_process_groups, new_process_group class Engine: """ An High-Level API for auto parallel, which could be used for distributed Training (engine.fit) and Inferenced (engine.predict). Static graph mode is supported natively, Dynamic graph mode is also supported under `@to_static `_ . Args: model (paddle.nn.Layer, optional): The model is an instance of paddle.nn.Layer. loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer` instance or any callable function taken the predicted values and ground truth values as input. It can be None when there is no loss. Default: None. optimizer (Optimizer|None, optional): The optimizer need to be set in training and should be None in eval and predict mode. Default: None. metrics (Metric|list[Metric]|None, optional): If metrics is set, all metrics will be calculated and output in train/eval mode. Default: None. cluster (Cluster|None, optional): The cluster represents the topology information about the used physical devices. Default: None. (Unused for now) strategy (Strategy|None, optional): The strategy is used to configure the parallelization and optimization behaviors. Default: None. Examples: .. code-block:: python >>> import paddle >>> import paddle.vision.transforms as T >>> from paddle.distributed.fleet import auto >>> from paddle.vision.datasets import MNIST >>> transform = T.Compose([ ... T.Transpose(), ... T.Normalize([127.5], [127.5]) >>> ]) >>> train_dataset = MNIST(mode='train', transform=transform) >>> valid_dataset = MNIST(mode='test', transform=transform) >>> model = paddle.vision.models.LeNet() >>> loss = paddle.nn.CrossEntropyLoss() >>> optimizer = paddle.optimizer.Adam( ... learning_rate=0.001, parameters=model.parameters()) >>> metrics = paddle.metric.Accuracy(topk=(1, 2)) >>> engine = auto.Engine(model, loss, optimizer, metrics) >>> # fit >>> engine.fit(train_dataset, ... epochs=2, ... batch_size=64) >>> # evaluate >>> engine.evaluate(valid_dataset, ... batch_size=64) >>> # predict >>> engine.predict(valid_dataset, ... batch_size=64) >>> # save >>> engine.save("./my_model") >>> # load >>> engine.load("./my_model") """ def __init__( self, model=None, loss=None, optimizer=None, metrics=None, cluster=None, strategy=None, ): if ( model and not isinstance(model, paddle.nn.Layer) and not callable(model) ): raise TypeError( "'model must be sub classes of `paddle.nn.Layer` or any callable function." ) self._model = model self._parameter_list = ( None if not model else [p.name for p in model.parameters()] ) if ( loss and not isinstance(loss, (paddle.nn.Layer, Variable)) and not callable(loss) ): raise TypeError( "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable." ) self._loss = loss if optimizer and not isinstance( optimizer, (paddle.optimizer.Optimizer), ): raise TypeError( "'optimizer' must be object of class `paddle.optimizer.Optimizer`" ) self._optimizer = auto_utils.validate_opt(optimizer) metrics = metrics or [] for metric in auto_utils.to_list(metrics): if metric and not isinstance(metric, Metric): raise TypeError( "{} is not sub class of Metric".format( metric.__class__.__name__ ) ) self._metrics = auto_utils.to_list(metrics) if cluster and not isinstance(cluster, Cluster): raise TypeError( "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`" ) self._cluster = cluster or get_default_cluster() if strategy and not isinstance(strategy, Strategy): raise TypeError( "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`" ) self._strategy = strategy or Strategy() self._logger = get_logger(logging.INFO) self._json_config = None if cluster: self._cluster = cluster else: if os.getenv("PADDLE_AUTO_PARALLEL_CONFIG"): try: path = os.getenv("PADDLE_AUTO_PARALLEL_CONFIG") with open(path, "r") as f: self._json_config = json.load(f) except Exception as e: self._logger.info( "Load json failed, please check json file, engine will run default config." ) self._json_config = None self._cluster = get_default_cluster(self._json_config) if os.getenv("POD_NAME"): self._logger.info( "Distribute training by paddle.distributed.launch" ) fleet.init(is_collective=True) # for compute cost # TODO: remove _fwd_main_progs and _orig_optimizer self._fwd_dist_contexts = {} self._fwd_main_progs = {} self._orig_optimizer = copy.deepcopy(self._optimizer) self._executor = None self._cur_rank = paddle.distributed.get_rank() self._nranks = paddle.distributed.get_world_size() self._saver = DistributedSaver() self._orig_main_prog = static.default_main_program() self._orig_startup_prog = static.default_startup_program() self._orig_dist_context = get_default_distributed_context() self._dist_contexts = {} self._planners = {} self._has_prepared = {"train": False, "eval": False, "predict": False} self._has_prepared_reader = { "train": False, "eval": False, "predict": False, } self._inputs_spec = [] self._labels_spec = [] self._inputs = [] self._labels = [] self._losses = [] self._mode = None self._skip_build = False self._outside_dataloader = False self._planned_mode = None self._dygraph_mode = False self._tuning = self._strategy.tuning self._acc_steps = 1 if self._strategy.gradient_merge.enable: self._acc_steps = self._strategy.gradient_merge.k_steps elif self._strategy.pipeline.enable: self._acc_steps = self._strategy.pipeline.accumulate_steps if ( self._strategy.pipeline.enable and self._strategy.pipeline.schedule_mode == "1F1B" ): assert ( os.getenv("CUDA_MODULE_LOADING") != "LAZY" ), "EXP_CUDA_MODULE_LOADING_LAZY not supported in 1F1B pipeline." self.history = None paddle.framework.set_flags({'FLAGS_new_executor_sequential_run': 1}) paddle.framework.set_flags({'FLAGS_new_executor_static_build': 1}) def _prepare_data_spec(self, data, split, batch_size): inputs_spec = [] labels_spec = [] if isinstance(data, paddle.io.IterableDataset): if split is None: inputs, labels = next(iter(data)) else: sample = next(iter(data)) inputs = sample[:split] labels = sample[split:] elif isinstance(data, paddle.io.Dataset): if split is None: inputs, labels = data[0] else: sample = data[0] inputs = sample[:split] labels = sample[split:] else: raise TypeError( "Data should be a Dataset or IterableDataset, but received {}.".format( type(data).__name__ ) ) inputs = auto_utils.to_list(inputs) labels = auto_utils.to_list(labels) num_shards = self._strategy.dataset.num_shards def _adjust_item_spec(num_shards, spec): if num_shards > 1 and len(spec.shape) > 1: spec.shape[0] = spec.shape[0] * num_shards def _infer_item_spec(item, name, batch_size, specs): if isinstance(item, np.ndarray): spec = InputSpec.from_numpy(item, name) if batch_size is None: _adjust_item_spec(num_shards, spec) specs.append(spec) else: specs.append(spec.batch(batch_size)) elif isinstance(item, (Variable, core.eager.Tensor)): spec = InputSpec.from_tensor(item, name) _adjust_item_spec(num_shards, spec) if batch_size is None: specs.append(spec) else: specs.append(spec.batch(batch_size)) elif isinstance(item, numbers.Number): specs.append(InputSpec([batch_size], type(item), name)) else: raise TypeError( "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format( type(item).__name__ ) ) if inputs is not None: for i, item in enumerate(inputs): assert item is not None, "Receive None input." name = "input" + str(i) _infer_item_spec(item, name, batch_size, inputs_spec) if labels is not None: for i, item in enumerate(labels): assert item is not None, "Receive None input." name = "label" + str(i) _infer_item_spec(item, name, batch_size, labels_spec) inputs_spec = self._validate_spec(inputs_spec) labels_spec = self._validate_spec(labels_spec) return inputs_spec, labels_spec def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels): if in_dynamic_mode() or self._dygraph_mode: raise ValueError("Only support static graph mode.") if inputs_spec: assert isinstance( inputs_spec, list ), "inputs should be list, but received {}".format( type(inputs_spec) ) assert isinstance( inputs, list ), f"inputs should be list, but received {type(inputs)}" assert len(inputs_spec) == len( inputs ), "the number of `inputs_spec` should be equal to `inputs`'s." for input_spec, input in zip(inputs_spec, inputs): if input_spec.shape != input.shape: input.desc.set_shape(input_spec.shape) if labels_spec: assert isinstance( labels_spec, list ), "labels should be list, but received {}".format( type(labels_spec) ) assert isinstance( labels, list ), f"labels should be list, but received {type(labels)}" assert len(labels_spec) == len( labels ), "the number of `labels_spec` should be equal to `labels`'s." for label_spec, label in zip(labels_spec, labels): if label_spec.shape != label.shape: label.desc.set_shape(label_spec.shape) return inputs, labels def _prepare_reader(self, feed_list=[]): dist_context = self._dist_contexts[self._mode] dist_main_prog = dist_context.dist_main_programs[self._cur_rank] dist_main_block = dist_main_prog.global_block() # NOTE: this list may be changed if Paddle changes the existing rules. related_reader_ops = [ "create_py_reader", "create_double_buffer_reader", "read", ] # remove the first three ops if multiple run fit/evaluate/predict if dist_main_block.ops[0].type == 'create_py_reader': for i in range(len(related_reader_ops)): if dist_main_block.ops[0].type in related_reader_ops: dist_main_block._remove_op(0, sync=False) dist_main_block._sync_with_cpp() # Step 1: find the reader ops reader_op_indices = [] for idx, op in enumerate(dist_main_block.ops): if op.type in related_reader_ops: reader_op_indices.append(idx) # Step 2: insert the new reader ops to cpp # record the read ops' desc to insert to program of forward task_node read_ops_desc = [] new_reader_ops = [] for idx in reversed(reader_op_indices): new_op_desc = dist_main_block.desc._prepend_op() new_op_desc.copy_from(dist_main_block.ops[idx].desc) read_ops_desc.append(new_op_desc) new_op = Operator( dist_main_block, new_op_desc, type=new_op_desc.type() ) new_reader_ops.append(new_op) dist_op = DistributedOperator(new_op) dist_context.add_dist_op_for_program(dist_op) # Step 3: insert the new reader ops to python for new_op in new_reader_ops: dist_main_block.ops.insert(0, new_op) for i in range(len(reader_op_indices)): reader_op_indices[i] += len(reader_op_indices) # Step 4: remove the old reader ops from python and cpp for idx in reversed(reader_op_indices): op = dist_main_block.ops.pop(idx) dist_main_block.desc._remove_op(idx, idx + 1) dist_main_block._sync_with_cpp() self._has_prepared_reader[self._mode] = True # Insert read op to forward TaskNode for fleet executor if 1F1B pass is setted if ( self.main_program._pipeline_opt and not auto_utils.use_new_executor() ): assert "tasks" in self.main_program._pipeline_opt["fleet_opt"] fleet_opt = self.main_program._pipeline_opt["fleet_opt"] fwd_task = None if self._strategy.pipeline.schedule_mode == "1F1B": fwd_task = fleet_opt["tasks"][1] elif self._strategy.pipeline.schedule_mode == "stream": fwd_task = fleet_opt["tasks"][0] assert fwd_task is not None fwd_prog = fwd_task.get_program() fwd_block = fwd_prog.global_block() for var in feed_list: if var.name not in fwd_block.vars: fwd_block._clone_variable(var) for op_desc in read_ops_desc: new_op_desc = fwd_block.desc._prepend_op() new_op_desc.copy_from(op_desc) new_op = Operator( fwd_block, new_op_desc, type=new_op_desc.type() ) fwd_block.ops.insert(0, new_op) fwd_block._sync_with_cpp() fwd_task.set_program(fwd_prog) def _prepare_feed(self, data, user_feeds, mode): feeds = {} if data is not None: if isinstance(data, (list, tuple)): if len(data) == 1 and isinstance(data[0], dict): for name, value in data[0].items(): feeds[name] = value else: raise ValueError(f"Unsupported data {data}") elif isinstance(data, dict): for name, value in data.items(): feeds[name] = value else: raise ValueError(f"Unsupported data {data}") if user_feeds is not None: assert isinstance( user_feeds, dict ), "user_feeds must be a dict, but receive {}".format( type(user_feeds).__name__ ) for name, data in user_feeds.items(): feeds[name] = data return feeds def _prepare_fetch(self, user_fetches, mode): if user_fetches is not None: assert isinstance( user_fetches, list ), "user_fetches must be a list, but receive {}".format( type(user_fetches).__name__ ) fetch_names = [] fetch_indices = [] def _process_fetch_group(group_name, var_list): group_indices = [] for var in var_list: # Remove duplicate var_names if self._is_local_var(var): var_name = _to_name_str(var) if var_name not in fetch_names: fetch_names.append(var_name) group_indices.append(fetch_names.index(var_name)) fetch_indices.append(group_indices) dist_context = self._dist_contexts[mode] fetch_vars = dist_context.serial_fetch_vars if mode != "predict": _process_fetch_group("loss", fetch_vars["loss"]) if mode != "predict": metrics = fetch_vars["metrics"] for i, var_list in enumerate(metrics): _process_fetch_group("metrics_" + str(i), var_list) if mode == "predict": _process_fetch_group("outputs", fetch_vars["outputs"]) for usr_fetch in user_fetches or []: var_name = _to_name_str(usr_fetch) fetch(var_name) user_fetches_collection = [ item[1] for item in get_collection(CollectionNames.FETCHES) ] var_list = user_fetches_collection or [] _process_fetch_group("fetches", var_list) return fetch_names, fetch_indices def _prepare_logger( self, outs, epoch=None, step=None, lr=None, fetch_names=None, fetch_indices=None, mode=None, ): logs = {} if epoch is not None: logs["epoch"] = epoch if step is not None: logs["step"] = step + 1 if lr is not None: logs["lr"] = lr group_idx = 0 if mode != "predict": # logging loss loss_indices = fetch_indices[group_idx] assert len(loss_indices) <= 1 for idx in loss_indices: logs["loss"] = outs[idx] group_idx += 1 # logging metrics dist_context = self._dist_contexts[mode] metric_vars = dist_context.serial_fetch_vars["metrics"] if metric_vars: for metric in self._metrics: metrics_indices = fetch_indices[group_idx] metric_out = [] for idx in metrics_indices: metric_out.append(outs[idx]) if metric_out: metric.update(*metric_out) results = metric.accumulate() for i, res in enumerate(auto_utils.to_list(results)): logs[metric.name()[i]] = res group_idx += 1 # logging outputs elif mode == "predict": outputs_indices = fetch_indices[group_idx] logs_out = {} for idx in outputs_indices: logs_out["out%d" % (idx)] = outs[idx] logs["outputs"] = logs_out group_idx += 1 # logging user fetches collect_fetches = get_collection(CollectionNames.FETCHES) logs_fetch = {} for name, var_name in collect_fetches: if var_name in fetch_names: idx = fetch_names.index(var_name) logs_fetch[name or var_name] = outs[idx] logs["fetches"] = logs_fetch return logs def _prepare_program(self, mode, init_parameters=True): # Do the build process self._build(mode) # Do the planning process self._plan(mode) # Do the parallel process self._parallel(mode) # Init comm self._init_comm() if init_parameters: # startup program self._initialize(mode) self._has_prepared[mode] = True def _build(self, mode): if in_dynamic_mode() or self._dygraph_mode: paddle.disable_static() self._dygraph_mode = True self._logger.info("Building model with 'to_static' method.") self.program_helper = ProgramHelper( self._model, self._loss, self._metrics, self._inputs_spec, self._labels_spec, ) # build forward main program with utils.unique_name.guard(): self.program_helper.build_program(mode) self.concrete_program = self.program_helper.concrete_program serial_main_prog = self.program_helper.main_program serial_startup_prog = self.program_helper.startup_program self._inputs = self.program_helper.input_vars self._labels = self.program_helper.label_vars outputs = self.program_helper.output_vars self._losses = self.program_helper.loss_vars metrics = self.program_helper.metric_vars paddle.enable_static() else: # build program in static mode dist_context = self._dist_contexts.get(mode, None) if dist_context is not None: return outputs = [] metrics = [] self._losses = [] serial_main_prog = self._orig_main_prog.clone() serial_startup_prog = self._orig_startup_prog.clone() if not self._skip_build: with static.program_guard( serial_main_prog, serial_startup_prog ), utils.unique_name.guard(): self._inputs = [ s._create_feed_layer() for s in self._inputs_spec ] self._labels = [ s._create_feed_layer() for s in self._labels_spec ] outputs = auto_utils.to_list(self._model(*self._inputs)) if mode != "predict" and self._loss: assert isinstance( self._loss, paddle.nn.Layer ) or callable( self._loss ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function." self._losses = auto_utils.to_list( self._loss(*(outputs + self._labels)) ) if mode != "predict" and (outputs or self._labels): for metric in self._metrics: metrics.append( auto_utils.to_list( metric.compute(*(outputs + self._labels)) ) ) elif mode == "train": assert isinstance( self._loss, Variable ), "the type of `loss` of the Engine arguments should be Variable." self._losses = auto_utils.to_list(self._loss) default_ctx = get_default_distributed_context() if not default_ctx.has_annotation: # We build the world process group because the data parallel # needs all ranks by default. new_process_group(list(range(self._nranks))) default_ctx.data_parallel = True self._inputs = [ auto_utils.set_data_parallel(var) for var in self._inputs ] self._labels = [ auto_utils.set_data_parallel(var) for var in self._labels ] feed_vars = {"inputs": self._inputs, "labels": self._labels} fetch_vars = { "outputs": paddle.utils.flatten(outputs), "loss": self._losses, "metrics": metrics, } if mode != "train": serial_main_prog = serial_main_prog.clone(for_test=True) auto_utils.set_recompute_segments( self._model, self._losses, self._strategy, serial_main_prog ) self._dist_contexts[mode] = DistributedContext( serial_main_prog, serial_startup_prog, self._optimizer, self._losses, feed_vars, fetch_vars, self._cluster, self._strategy, self._json_config, ) self._fwd_dist_contexts[mode] = DistributedContext( serial_main_prog, serial_startup_prog, self._optimizer, self._losses, feed_vars, fetch_vars, self._cluster, self._strategy, self._json_config, ) self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale self._fwd_main_progs[mode] = serial_main_prog.clone() def _optimization_tuning(self, mode, dataset, batch_size): if not self._tuning.enable: raise ValueError("Please set `tuning.enable=True`.") assert mode == "train" # Do the build process self._build(mode) # Do the planning process self._plan(mode) dataset.dp_world_size = self._dp_world_sizes dataset.dp_rank = self._dp_ranks from .tuner.optimization_tuner import OptimizationTuner self._optimization_tuner = OptimizationTuner( self._dist_contexts[mode], dataset, self._inputs_spec, self._labels_spec, batch_size=batch_size, rank=self._cur_rank, ) self._optimization_tuner.tune() if self._tuning.run_after_tuning: # update the strategy self._dist_contexts[ mode ]._strategy = self._optimization_tuner.get_best_config() def _plan(self, mode): if self._planned_mode is None: self._planned_mode = mode else: self._init_dist_context(mode) self._planners[mode] = Planner(mode, self._dist_contexts[mode]) self._planners[mode].plan() # infer data parallel info inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"] labels_var = self._dist_contexts[mode].serial_feed_vars["labels"] block = self._dist_contexts[mode].serial_main_program.global_block() # TODO: check this feed_list feed_list = [] for var in inputs_var + labels_var: if var.name in block.vars: feed_list.append(block.vars[var.name]) self._dp_world_sizes = [] self._dp_ranks = [] for feed_var in feed_list: dp_world_size, dp_rank = auto_utils.get_input_split_info( self._cur_rank, feed_var, self._dist_contexts[mode] ) self._dp_world_sizes.append(dp_world_size) self._dp_ranks.append(dp_rank) def _parallel(self, mode, all_ranks=False): # Parallelize program based on the planner's results # For now, the completer has to be passed to the Parallelizer, # because we may use it to complete the annotation of the backward and update. parallelizer = Parallelizer( mode, self._planners[mode].completer, self._dist_contexts[mode], ) if not all_ranks: parallelizer.parallel(self._cur_rank, self._parameter_list) else: parallelizer.parallel_all(self._parameter_list) def _init_dist_context(self, mode): # Init dist_context['mode'] with the first planned dist_context # to guarantee that train/eval/predict mode have same parallel strategy dist_context = self._dist_contexts[mode] origin_main_prog = dist_context._original_serial_main_program ref_mode = self._planned_mode ref_dist_context = self._dist_contexts[ref_mode] ref_origin_main_prog = ref_dist_context._original_serial_main_program ref_blocks = ref_origin_main_prog.blocks for ib, block in enumerate(origin_main_prog.blocks): for iop, op in enumerate(block.ops): ref_op = ref_blocks[ib].ops[iop] assert ( op.type == ref_op.type ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format( mode, op.type, ref_mode, ref_op.type ) ref_op_dist_attr = ( ref_dist_context.get_op_dist_attr_for_program(ref_op) ) dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr) def _init_comm(self): if self._nranks > 1: # Traverse different rank programs and traverse each op of them, # instantiate communication by process_mapping. all_process_groups = get_all_process_groups() if self._strategy.auto_mode == "full_random": auto_utils.initialize_pg_in_full_mode( all_process_groups, self._cur_rank ) else: for process_group in all_process_groups: process_group.instantiate() def _initialize(self, mode): self._place = _get_device() if isinstance(self._place, paddle.framework.CUDAPlace): self._place = paddle.framework.CUDAPlace( paddle.distributed.ParallelEnv().dev_id ) if self._strategy.seed: paddle.seed(self._strategy.seed + self._dp_ranks[0]) np.random.seed(self._strategy.seed + self._dp_ranks[0]) random.seed(self._strategy.seed + self._dp_ranks[0]) dist_context = self._dist_contexts[mode] if self._dygraph_mode: dist_main_program = dist_context.dist_main_programs[self._cur_rank] self.program_helper.init( dist_main_program, self._place, dist_context ) if self._executor is None: self._executor = paddle.static.Executor(self._place) uninitialized = [] dist_startup_prog = dist_context.dist_startup_programs[ self._cur_rank ] for var in dist_startup_prog.list_vars(): scope_var = global_scope().find_var(var.name) if scope_var and scope_var.get_tensor()._is_initialized(): continue uninitialized.append(var) if uninitialized: prune_startup_prog = dist_startup_prog._prune(uninitialized) self._executor.run(prune_startup_prog) if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"): self._set_state_dict( mode, self._strict, self._state_dict, self._dist_attr ) if self._strategy.reinit: self._logger.info("NOTE: parameters will be re-initialized.") dist_startup_prog = dist_context.dist_startup_programs[ self._cur_rank ] self._executor.run(dist_startup_prog) def fit( self, train_data, train_sample_split=None, batch_size=1, epochs=1, steps_per_epoch=None, log_freq=10, save_dir=None, save_freq=1, valid_data=None, valid_sample_split=None, valid_freq=1, valid_steps=None, collate_fn=None, callbacks=None, verbose=2, nvprof_range=[-1, -1], ): """ Trains the model for a fixed number of epochs. If `valid_data` is set, evaluation will be done at the end of each epoch. Args: train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None. train_sample_split (int, optional): Each sample of the train dataset is assumed to be a (input, label) pair by default and has two items. If each sample has more than two items, train_sample_split specifies how to split these items into input and label. The items before it are input and the left are label. Default: None. batch_size (int, optional): The batch size of train_data and valid_data if provided. The user's data will be used directly without batching if set to None. Default: 1. epochs (int, optional): The number of epochs to train the model. Default: 1. steps_per_epoch (int, optional): The total number of steps (batches of samples) is executed in one epoch before stating the next one. If None, it is equal to the number samples in your dataset divided by the batch size. Default: None. valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for evaluation at the end of epoch. No evaluation will be done if set to None. Default: None. (Unsupported for now) valid_freq (int, optional): Only relevant if valid_data is provided. This specifies how many training epochs before a new evaluation is performed. Default: 1. valid_sample_split (int, optional): Only relevant if valid_data is provided. Each sample of the valid dataset is assumed to be a (input, label) pair by default and has two items. If each sample has more than two items, valid_sample_split specifies how to split these items into input and label. The items before it are input and the left are label. Default: None. valid_steps (int, optional): Only relevant if valid_data is provided. It is the total number of steps (batches of samples) to draw before stopping validation at the end of every epoch. If None, validation will run until the `valid_data` dataset is exhausted. The validation will start from the beginning of the dataset at each epoch. Default: None. collate_fn(callable, optional): function to generate mini-batch data by merging the sample list, None for only stack each fields of sample in axis 0. Default None. callbacks (Callback|None, optional): A list of `Callback` instances to apply during training. Default: None. (Unused for now) nvprof_range(list, optional): A list of integers indicating nvprof ranges in form of [start_step, end_step]. Note that if start_step >= end_step, the nvprof will not apply. Returns: None Examples: .. code-block:: python >>> import paddle >>> import paddle.vision.transforms as T >>> from paddle.distributed.fleet import auto >>> from paddle.vision.datasets import MNIST >>> transform = T.Compose([ ... T.Transpose(), ... T.Normalize([127.5], [127.5]) >>> ]) >>> train_dataset = MNIST(mode='train', transform=transform) >>> model = paddle.vision.models.LeNet() >>> loss = paddle.nn.CrossEntropyLoss() >>> optimizer = paddle.optimizer.Adam( ... learning_rate=0.001, parameters=model.parameters()) >>> metrics = paddle.metric.Accuracy(topk=(1, 2)) >>> engine = auto.Engine(model, loss, optimizer, metrics) >>> engine.fit(train_dataset, ... epochs=2, ... batch_size=64) """ self._mode = 'train' self._inputs_spec, self._labels_spec = self._prepare_data_spec( train_data, train_sample_split, batch_size ) if not self._has_prepared[self._mode]: self._prepare_program(self._mode) else: self._switch_mode(self._mode) if auto_utils.use_new_executor(): local_batch_size = self._validate_batch_size(batch_size) train_dataloader = self._prepare_dataloader( train_data, return_list=False, batch_size=local_batch_size, epochs=epochs, collate_fn=collate_fn, ) steps_per_epoch = ( len(train_dataloader) if steps_per_epoch is None else steps_per_epoch ) else: micro_batch_size = self._validate_batch_size(batch_size) train_dataloader = self._prepare_dataloader_from_generator( dataset=train_data, capacity=70, iterable=False, batch_size=micro_batch_size, epochs=epochs, steps_per_epoch=steps_per_epoch, collate_fn=collate_fn, ) steps_per_epoch = train_dataloader._steps local_batch_size = micro_batch_size if self._strategy.pipeline.enable: local_batch_size = micro_batch_size * self._acc_steps fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode) cbks = config_callbacks( callbacks, engine=self, batch_size=local_batch_size, epochs=epochs, steps=steps_per_epoch, log_freq=log_freq, save_freq=save_freq, save_dir=save_dir, verbose=verbose, metrics=self._metrics_name(), acc_step=1 if self._strategy.pipeline.enable else self._acc_steps, # lr update once every local batch ) cbks.on_begin('train') for epoch in range(epochs): logs = {} cbks.on_epoch_begin(epoch) for step, batch in enumerate(train_dataloader): if auto_utils.use_new_executor(): batches = self._validate_batch(batch) else: batches = [{}] try: for micro_batch in batches: with paddle.profiler.utils._nvprof_range( iter_id=step, start=nvprof_range[0], end=nvprof_range[1], ): cbks.on_batch_begin('train', step, logs) outs = self._executor.run( self.main_program, feed=micro_batch, fetch_list=fetch_names, use_program_cache=self._strategy.use_cache, return_numpy=self._strategy.return_numpy, ) lr = auto_utils.get_lr(self.optimizer) logs = self._prepare_logger( outs, epoch, step, lr, fetch_names, fetch_indices, self._mode, ) cbks.on_batch_end('train', step, logs) except core.EOFException: break if steps_per_epoch and step >= steps_per_epoch: if not auto_utils.use_new_executor(): train_dataloader._reset() break if valid_data and (epoch + 1) % valid_freq == 0: val_logs = self.evaluate( valid_data, valid_sample_split, batch_size, valid_steps, log_freq, collate_fn, callbacks, verbose, ) val_logs = { "val_" + name: val for name, val in val_logs.items() } logs.update(val_logs) self._switch_mode("train") else: self._reset_metrics() cbks.on_epoch_end(epoch, logs) cbks.on_end('train', logs) return self.history def evaluate( self, valid_data, valid_sample_split=None, batch_size=1, steps=None, log_freq=10, collate_fn=None, callbacks=None, verbose=2, ): """ Evaluate the loss and metrics of the model on evaluation data. Args: valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None. valid_sample_split (int, optional): Each sample of the eval dataset is assumed to be a (input, label) pair by default and has two items. If each sample has more than two items, valid_sample_split specifies how to split these items into input and label. The items before it are input and the left are label. Default: None. batch_size (int, optional): The batch size of valid_data. The user's data will be used directly without batching if set to None. Default: 1. steps (int, optional): It is the total number of steps (batches of samples) to draw before stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted. The evaluation will start from the beginning of the dataset in each run. Default: None. collate_fn(callable, optional): function to generate mini-batch data by merging the sample list, None for only stack each fields of sample in axis 0. Default None. callbacks (Callback|None, optional): A list of `Callback` instances to apply during evaluating. Default: None. (Unused for now) Returns: None Examples: .. code-block:: python >>> import paddle >>> import paddle.vision.transforms as T >>> from paddle.distributed.fleet import auto >>> from paddle.vision.datasets import MNIST >>> transform = T.Compose([ ... T.Transpose(), ... T.Normalize([127.5], [127.5]) >>> ]) >>> valid_dataset = MNIST(mode='test', transform=transform) >>> model = paddle.vision.models.LeNet() >>> loss = paddle.nn.CrossEntropyLoss() >>> metrics = paddle.metric.Accuracy(topk=(1, 2)) >>> engine = auto.Engine(model, loss, metrics=metrics) >>> engine.evaluate(valid_dataset, batch_size=64) """ self._mode = 'eval' self._inputs_spec, self._labels_spec = self._prepare_data_spec( valid_data, valid_sample_split, batch_size ) if not self._has_prepared[self._mode]: self._prepare_program(self._mode) else: self._switch_mode(self._mode) micro_batch_size = self._validate_batch_size(batch_size) valid_dataloader = self._prepare_dataloader_from_generator( dataset=valid_data, capacity=70, iterable=False, batch_size=micro_batch_size, steps_per_epoch=steps, collate_fn=collate_fn, ) fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode) cbks = config_callbacks( callbacks, engine=self, batch_size=micro_batch_size, log_freq=log_freq, verbose=verbose, metrics=self._metrics_name(), ) eval_steps = valid_dataloader._steps cbks.on_begin( 'eval', {'steps': eval_steps, 'metrics': self._metrics_name()} ) logs = {} for step, _ in enumerate(valid_dataloader): cbks.on_batch_begin('eval', step, logs) try: outs = self._executor.run( self.main_program, fetch_list=fetch_names, use_program_cache=self._strategy.use_cache, return_numpy=self._strategy.return_numpy, ) except core.EOFException: break logs = self._prepare_logger( outs, None, step, None, fetch_names, fetch_indices, self._mode ) cbks.on_batch_end('eval', step, logs) cbks.on_end('eval', logs) self._reset_metrics() return logs def predict( self, test_data, test_sample_split=None, batch_size=1, steps=None, collate_fn=None, callbacks=None, verbose=2, ): """ Compute the output predictions on testing data. Args: test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None. test_sample_split (int, optional): Each sample of the test dataset is assumed to be a (input, label) pair by default and has two items. If each sample has more than two items, test_sample_split specifies how to split these items into input and label. The items before it are input and the left are label. Default: None. batch_size (int, optional): The batch size of test_data. The user's data will be used directly without batching if set to None. Default: 1. steps (int, optional): It is the total number of steps (batches of samples) to draw before stopping predict. If None, predict will run until the `test_data` dataset is exhausted. The predict will start from the beginning of the dataset in each run. Default: None. collate_fn(callable, optional): function to generate mini-batch data by merging the sample list, None for only stack each fields of sample in axis 0. Default None. callbacks (Callback|None, optional): A list of `Callback` instances to apply during testing. Default: None. (Unused for now) Returns: None Examples: .. code-block:: python >>> import paddle >>> import paddle.vision.transforms as T >>> from paddle.distributed.fleet import auto >>> from paddle.vision.datasets import MNIST >>> transform = T.Compose([ ... T.Transpose(), ... T.Normalize([127.5], [127.5]) >>> ]) >>> valid_dataset = MNIST(mode='test', transform=transform) >>> model = paddle.vision.models.LeNet() >>> engine = auto.Engine(model) >>> engine.predict(valid_dataset, batch_size=64) """ self._mode = 'predict' self._inputs_spec, self._labels_spec = self._prepare_data_spec( test_data, test_sample_split, batch_size ) if not self._has_prepared[self._mode]: self._prepare_program(self._mode) else: self._switch_mode(self._mode) micro_batch_size = self._validate_batch_size(batch_size) test_dataloader = self._prepare_dataloader_from_generator( dataset=test_data, capacity=70, iterable=False, batch_size=micro_batch_size, steps_per_epoch=steps, collate_fn=collate_fn, ) fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode) outputs = [] cbks = config_callbacks(callbacks, engine=self, verbose=verbose) test_steps = test_dataloader._steps cbks.on_begin('predict', {'steps': test_steps}) logs = {} for step, _ in enumerate(test_dataloader): cbks.on_batch_begin('predict', step, logs) try: outs = self._executor.run( self.main_program, fetch_list=fetch_names, use_program_cache=self._strategy.use_cache, return_numpy=self._strategy.return_numpy, ) except core.EOFException: break logs = self._prepare_logger( outs, None, step, None, fetch_names, fetch_indices, self._mode ) cbks.on_batch_end('predict', step, logs) outputs.append(list(logs["outputs"].values())) cbks.on_end('predict', logs) return outputs def dataloader( self, dataset, batch_size=1, shuffle=False, drop_last=False, collate_fn=None, num_workers=0, use_buffer_reader=True, use_shared_memory=True, timeout=0, worker_init_fn=None, epochs=1, steps_per_epoch=None, sample_split=1, mode=None, places=None, ): if mode is not None: self.to_mode(mode) self._inputs_spec, self._labels_spec = self._prepare_data_spec( dataset, sample_split, batch_size ) if not self._has_prepared[self._mode]: self._prepare_program(self._mode) else: self._switch_mode(self._mode) batch_size = self._validate_batch_size(batch_size) dataloader = self._prepare_dataloader( dataset, return_list=False, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, use_buffer_reader=use_buffer_reader, use_shared_memory=use_shared_memory, timeout=timeout, worker_init_fn=worker_init_fn, epochs=epochs, steps_per_epoch=steps_per_epoch, places=places, ) return dataloader def dataloader_from_generator( self, dataset, capacity=70, use_double_buffer=True, iterable=True, use_multiprocess=False, drop_last=True, batch_size=1, epochs=1, steps_per_epoch=None, collate_fn=None, sample_split=1, mode=None, ): if mode is not None: self.to_mode(mode) self._inputs_spec, self._labels_spec = self._prepare_data_spec( dataset, sample_split, batch_size ) if not self._has_prepared[self._mode]: self._prepare_program(self._mode) else: self._switch_mode(self._mode) micro_batch_size = self._validate_batch_size(batch_size) dataloader = self._prepare_dataloader_from_generator( dataset=dataset, capacity=capacity, use_double_buffer=use_double_buffer, iterable=iterable, return_list=False, use_multiprocess=use_multiprocess, drop_last=drop_last, batch_size=micro_batch_size, epochs=epochs, steps_per_epoch=steps_per_epoch, collate_fn=collate_fn, ) return dataloader def prepare( self, inputs_spec=None, labels_spec=None, inputs=None, labels=None, main_program=None, startup_program=None, mode=None, init_parameters=True, ): if mode is not None: self.to_mode(mode) if not self._mode: raise ValueError( "Please set mode to be prepared with `prepare(mode=...)`" ) if self._has_prepared[self._mode]: return inputs_spec = self._validate_spec(inputs_spec) labels_spec = self._validate_spec(labels_spec) inputs = self._validate_vars(inputs) labels = self._validate_vars(labels) self._orig_main_prog = main_program self._orig_startup_prog = startup_program if inputs or labels: self._skip_build = True inputs, labels = self._prepare_data_tensor( inputs_spec, labels_spec, inputs, labels ) if self._orig_main_prog is None: self._orig_main_prog = static.default_main_program() if self._orig_startup_prog is None: self._orig_startup_prog = static.default_startup_program() elif inputs_spec or labels_spec: self._outside_dataloader = True if self._orig_main_prog is None: self._orig_main_prog = static.default_main_program() if self._orig_startup_prog is None: self._orig_startup_prog = static.default_startup_program() else: assert ( self._inputs_spec and self._labels_spec ), "Please call the dataloader(...) before calling prepare(...)" self._inputs_spec, self._labels_spec = inputs_spec, labels_spec self._inputs, self._labels = inputs, labels if not self._has_prepared[self._mode]: self._prepare_program(self._mode, init_parameters) else: self._switch_mode(self._mode) def run(self, data=None, feed=None, fetch_list=None, mode=None): if mode is not None: self.to_mode(mode) feed_dict = self._prepare_feed(data, feed, self._mode) fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode) if ( self._outside_dataloader and not self._has_prepared_reader[self._mode] ): self._prepare_reader() outs = self._executor.run( self.main_program, feed=feed_dict, fetch_list=fetch_names, use_program_cache=self._strategy.use_cache, return_numpy=self._strategy.return_numpy, ) logs = self._prepare_logger( outs, None, None, None, fetch_names, fetch_indices, self._mode ) return logs def _prepare_dataloader( self, dataset, return_list=True, batch_size=1, shuffle=False, drop_last=False, collate_fn=None, num_workers=0, use_buffer_reader=True, use_shared_memory=True, timeout=0, worker_init_fn=None, epochs=1, steps_per_epoch=None, places=None, ): dist_context = self._dist_contexts[self._mode] dist_main_prog = dist_context.dist_main_programs[self._cur_rank] dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank] dist_main_block = dist_main_prog.global_block() # NOTE: Get feed_list, then insert dataloader op with sharded var shape. # Cause predict_program does not contain labels var, # then we will add labels var from serial_program to dist_program, # that maintains the length of feed_list equal to the length of dataset's values. inputs_var = dist_context.serial_feed_vars["inputs"] labels_var = dist_context.serial_feed_vars["labels"] feed_list = [] for var in inputs_var + labels_var: if var.name in dist_main_block.vars: feed_list.append(dist_main_block.vars[var.name]) else: copy_var = dist_main_block._clone_variable(var, var.persistable) copy_var.desc.set_original_id(var.desc.original_id()) feed_list.append(copy_var) # insert read op at the end of program with static.program_guard(dist_main_prog, dist_startup_prog): dataloader = DistributedDataLoader( dataset, feed_list=feed_list, places=places, return_list=return_list, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, use_buffer_reader=use_buffer_reader, use_shared_memory=use_shared_memory, timeout=timeout, worker_init_fn=worker_init_fn, epochs=epochs, steps_per_epoch=steps_per_epoch, split_data=self._strategy.split_data, data_parallel_world_size=self._dp_world_sizes, data_parallel_rank=self._dp_ranks, ) return dataloader def _prepare_dataloader_from_generator( self, dataset, capacity=None, use_double_buffer=True, iterable=True, return_list=False, use_multiprocess=False, drop_last=True, batch_size=1, epochs=1, steps_per_epoch=None, collate_fn=None, ): dist_context = self._dist_contexts[self._mode] dist_main_prog = dist_context.dist_main_programs[self._cur_rank] dist_startup_prog = dist_context.dist_startup_programs[self._cur_rank] dist_main_block = dist_main_prog.global_block() # NOTE: Get feed_list, then insert dataloader op with sharded var shape. # Cause predict_program does not contain labels var, # then we will add labels var from serial_program to dist_program, # that maintains the length of feed_list equal to the length of dataset's values. inputs_var = dist_context.serial_feed_vars["inputs"] labels_var = dist_context.serial_feed_vars["labels"] feed_list = [] for var in inputs_var + labels_var: if var.name in dist_main_block.vars: feed_list.append(dist_main_block.vars[var.name]) else: copy_var = dist_main_block._clone_variable(var, var.persistable) copy_var.desc.set_original_id(var.desc.original_id()) feed_list.append(copy_var) places = paddle.static.cuda_places() with static.program_guard(dist_main_prog, dist_startup_prog): dataloader = DistributedDataLoaderFromGenerator( dataset=dataset, feed_list=feed_list, capacity=capacity, use_double_buffer=use_double_buffer, iterable=iterable, return_list=return_list, use_multiprocess=use_multiprocess, drop_last=drop_last, places=places, batch_size=batch_size, epochs=epochs, steps_per_epoch=steps_per_epoch, collate_fn=collate_fn, split_data=self._strategy.split_data, data_parallel_world_size=self._dp_world_sizes, data_parallel_rank=self._dp_ranks, acc_steps=1 if not self._strategy.pipeline.enable else self._acc_steps, ) self._prepare_reader(feed_list) return dataloader def _tune(self, tune_data, tune_sample_split=None, batch_size=1): self._mode = 'train' self._inputs_spec, self._labels_spec = self._prepare_data_spec( tune_data, tune_sample_split, batch_size ) self._optimization_tuning(self._mode, tune_data, batch_size) def _validate_batch_size(self, batch_size): if batch_size is None: return None if auto_utils.use_new_executor(): assert ( len(set(self._dp_world_sizes)) == 1 ), "DistributedBatchSampler only support one data parallel group, but got [{}] different data parallel groups".format( len(set(self._dp_world_sizes)) ) assert ( batch_size % self._dp_world_sizes[0] == 0 ), "batch_size [{}] is not divisible by dp_world_size [{}]".format( str(batch_size), str(self._dp_world_sizes[0]) ) return batch_size // self._dp_world_sizes[0] else: assert ( batch_size % self._acc_steps == 0 ), "Requires batch_size:[{}] to be divisible by acc_steps:[{}].".format( batch_size, self._acc_steps ) return batch_size // self._acc_steps def _validate_batch(self, batch): if batch is None: return [None] if self._strategy.pipeline.enable or self._acc_steps == 1: # pp with schedule or navie-pp return batch else: # split feed data with gradient_merge k_steps feed_names = [] split_batches = [] for feed_name, cur_feed in batch[0].items(): feed_names.append(feed_name) split_batches.append( np.split(np.array(cur_feed), self._acc_steps, 0) ) baches = [] for i in range(self._acc_steps): micro_batch = [split_batch[i] for split_batch in split_batches] baches.append(dict(zip(feed_names, micro_batch))) return baches def _validate_spec(self, specs): specs = auto_utils.to_list(specs) if specs is not None: for i, spec in enumerate(specs): if not isinstance(spec, InputSpec): raise TypeError( "'spec' must be object of class `paddle.static.InputSpec`." ) if spec.name is None: raise ValueError( "Requires Input[{}].name != None, but receive `None` with {}.".format( i, spec ) ) if self._acc_steps > 1: shape = list(spec.shape) assert ( shape[0] % self._acc_steps == 0 ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format( spec.shape[0], self._acc_steps ) shape[0] //= self._acc_steps spec.shape = shape return specs or [] def _validate_vars(self, vars): vars = auto_utils.to_list(vars) if vars is not None: for i, var in enumerate(vars): if not isinstance(var, Variable): raise TypeError("'var' must be a `Variable`.") return vars or [] def _is_local_var(self, var): var_name = _to_name_str(var) return var_name in self.main_program.global_block().vars def _reset_metrics(self): for metric in self._metrics: metric.reset() def _metrics_name(self): metrics_name = ['loss'] if self._loss else [] for m in self._metrics: metrics_name.extend(auto_utils.to_list(m.name())) return metrics_name def _switch_mode(self, mode): assert ( mode in self._dist_contexts ), f"{mode} model is not ready, please call `prepare()` first." self.to_mode(mode) def to_mode(self, mode): assert mode in [ "train", "eval", "predict", ], f"mode {mode} should be one of ['train', 'eval', 'predict']" self._mode = mode def _set_state_dict(self, mode, strict, state_dict, dist_attr): dist_context = self._dist_contexts[mode] program = dist_context.dist_main_programs[self._cur_rank] cur_dist_attr = auto_utils.get_dist_attr(program, dist_context) converter = Converter(state_dict, dist_attr, cur_dist_attr) state_dict = converter.convert(strict=strict) for name, param in program.state_dict().items(): param_array = np.array(param) if name not in state_dict: continue if param_array.dtype != state_dict[name].dtype: self._logger.info( "cast {}'s dtype from '{}' to '{}'".format( name, str(state_dict[name].dtype), str(param_array.dtype), ) ) state_dict[name] = state_dict[name].astype(param_array.dtype) program.set_state_dict(state_dict) def save(self, path, training=True): """ Saves the model, parameters, optimizer state to path. If `training` is set to False, only inference model will be saved. Args: path (str): The file prefix to save model. The format is 'dirname/file_prefix' or 'file_prefix'. if empty str. A exception will be raised. training (bool, optional): Whether to save for training. If not, save for inference only. If `training` is set to True, the optimizer state will be saved. Otherwise, only the model and parameters are saved. This function will silently overwrite existing file at the target location. Default: True. Returns: None Examples: .. code-block:: python >>> import paddle >>> import paddle.vision.transforms as T >>> from paddle.distributed.fleet import auto >>> from paddle.vision.datasets import MNIST >>> transform = T.Compose([ ... T.Transpose(), ... T.Normalize([127.5], [127.5]) >>> ]) >>> train_dataset = MNIST(mode='train', transform=transform) >>> model = paddle.vision.models.LeNet() >>> loss = paddle.nn.CrossEntropyLoss() >>> optimizer = paddle.optimizer.Adam( ... learning_rate=0.001, parameters=model.parameters()) >>> metrics = paddle.metric.Accuracy(topk=(1, 2)) >>> engine = auto.Engine(model, loss, optimizer, metrics) >>> engine.fit(train_dataset, ... epochs=1, ... batch_size=64) >>> engine.save("./my_model") """ if training: assert self._mode in self._dist_contexts dist_context = self._dist_contexts[self._mode] serial_program = dist_context.serial_main_program dist_main_prog = dist_context.dist_main_programs[self._cur_rank] self._saver.save( path, serial_program=serial_program, dist_main_program=dist_main_prog, dist_context=dist_context, ) else: assert "predict" in self._dist_contexts dist_context = self._dist_contexts["predict"] feed_vars = dist_context.serial_feed_vars['inputs'] fetch_vars = dist_context.serial_fetch_vars['outputs'] dist_main_prog = dist_context.dist_main_programs[self._cur_rank] if self._strategy.qat.enable and self._strategy.qat.onnx_format: from paddle.static.quantization import QuantWeightPass self._logger.info("export quantized model.") self._logger.info( f"convert config {self._strategy.qat.to_dict()}" ) test_graph = IrGraph( core.Graph(dist_main_prog.desc), for_test=True ) quant_weight_pass = QuantWeightPass(global_scope(), self._place) for sub_graph in test_graph.all_sub_graphs(): quant_weight_pass.apply(sub_graph) dist_main_prog = test_graph.to_program() self._saver.save_inference_model( path, feed_vars, fetch_vars, self._executor, program=dist_main_prog, ) def load(self, path, strict=True, load_optimizer=True): """ Load the stored model, parameters and optimizer states. Args: path (str): The prefix of files storing the model states and optimizer states. strict (bool, optional): Whether to skip the loading of mismatch parameter or raise an error when mismatch happens (not found the parameter in file storing model states of or receives a mismatch shape). Default: True. load_optimizer (bool, optional): If True, the stored optimizer states is restored. Otherwise, the optimizer states is initialized from scratch. Default: True. Returns: None Examples: .. code-block:: python >>> import paddle >>> import paddle.vision.transforms as T >>> from paddle.distributed.fleet import auto >>> from paddle.vision.datasets import MNIST >>> transform = T.Compose([ ... T.Transpose(), ... T.Normalize([127.5], [127.5]) >>> ]) >>> train_dataset = MNIST(mode='train', transform=transform) >>> model = paddle.vision.models.LeNet() >>> loss = paddle.nn.CrossEntropyLoss() >>> optimizer = paddle.optimizer.Adam( ... learning_rate=0.001, parameters=model.parameters()) >>> metrics = paddle.metric.Accuracy(topk=(1, 2)) >>> engine = auto.Engine(model, loss, optimizer, metrics) >>> engine.fit(train_dataset, ... epochs=1, ... batch_size=64) >>> engine.save("./my_model") >>> engine.load("./my_model") """ self._strict = strict self._state_dict, self._dist_attr = self._saver.load( path, load_optimizer ) return self._state_dict, self._dist_attr def cost(self, inputs_spec=None, labels_spec=None, mode=None): """ Get and Print cost, including memory of every rank, max memory among all ranks, and the global cost of one step based on communication cost(computation cost is 0 by default). In the future, the flops information of every rank and global cost including computation cost will be added. Args: inputs_spec(InputSpec): The specification of inputs. Default: None. labels_spec(InputSpec): The specification of labels. Default: None. mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None. Returns: Return the global execution time (ms) and max memory (B). """ # Check parallel mode if self._strategy.auto_mode == "full": self._logger.info( "The cost will be calcudated in the search process when the auto mode is full." ) return # Check mode mode = mode if mode is not None else self._mode assert mode is not None, "Please set mode." if mode not in self._has_prepared: raise ValueError( "The mode {} is not in accepted modes {}".format( mode, list(self._has_prepared.keys()) ) ) self.to_mode(mode) if inputs_spec is not None and not self._has_prepared[mode]: self._inputs_spec = self._validate_spec(inputs_spec) self._labels_spec = self._validate_spec(labels_spec) self._build(mode) self._plan(mode) else: if in_dynamic_mode() or self._dygraph_mode: raise ValueError( "Please call `prepare()` or `fit()` or `evaluate()` or `predict()` before calling `cost()`." ) else: self._logger.info( "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`." ) program = paddle.static.default_main_program() if ( not program.global_block().ops or not program.global_block().ops ) and not self._has_prepared[mode]: raise ValueError( "Please call `prepare()` or `fit()` or `evaluate()` or `predict()` before calling `cost()`." ) # Estimate the exec cost and max memory global_cost, max_memory = get_cost_from_engine(self, mode) return global_cost.time, max_memory @property def main_program(self): dist_context = self._dist_contexts[self._mode] return dist_context.dist_main_programs[self._cur_rank] @property def startup_program(self): dist_context = self._dist_contexts[self._mode] return dist_context.dist_startup_programs[self._cur_rank] @property def dist_context(self): return self._dist_contexts[self._mode] @property def serial_main_program(self): dist_context = self._dist_contexts[self._mode] return dist_context.serial_main_program @property def serial_startup_program(self): dist_context = self._dist_contexts[self._mode] return dist_context.serial_startup_program @property def feed_vars(self): dist_context = self._dist_contexts[self._mode] return dist_context.serial_feed_vars @property def fetch_vars(self): dist_context = self._dist_contexts[self._mode] return dist_context.serial_fetch_vars @property def optimizer(self): dist_context = self._dist_contexts[self._mode] if dist_context._serial_optimizer: return dist_context._serial_optimizer return self._optimizer @property def inputs(self): return self._inputs @property def labels(self): return self._labels