# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid.core as core import paddle.fluid as fluid def bow_net(data, label, dict_dim, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2): """ BOW net This model is from https://github.com/PaddlePaddle/models: fluid/PaddleNLP/text_classification/nets.py """ emb = fluid.layers.embedding( input=data, is_sparse=True, size=[dict_dim, emb_dim]) bow = fluid.layers.sequence_pool(input=emb, pool_type='sum') bow_tanh = fluid.layers.tanh(bow) fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh") fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh") prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) return avg_cost class TestGradientClip(unittest.TestCase): def setUp(self): self.word_dict = paddle.dataset.imdb.word_dict() self.BATCH_SIZE = 2 self.train_data = paddle.batch( paddle.dataset.imdb.train(self.word_dict), batch_size=self.BATCH_SIZE) def get_places(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) return places def check_operators(self, place): CLIP = 1 prog = fluid.framework.Program() startup_program = fluid.framework.Program() with fluid.program_guard( main_program=prog, startup_program=startup_program): image = fluid.layers.data(name='x', shape=[784], dtype='float32') label = fluid.layers.data(name='y', shape=[1], dtype='int64') hidden1 = fluid.layers.fc(input=image, size=128, act='relu') hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu') predict = fluid.layers.fc(input=hidden2, size=10, act='softmax') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(cost) prog_clip = prog.clone() avg_cost_clip = prog_clip.block(0).var(avg_cost.name) p_g = fluid.backward.append_backward(loss=avg_cost) p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip) with fluid.program_guard( main_program=prog_clip, startup_program=startup_program): fluid.clip.set_gradient_clip( fluid.clip.GradientClipByGlobalNorm(clip_norm=CLIP)) p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip) grad_list = [elem[1] for elem in p_g] grad_clip_list = [elem[1] for elem in p_g_clip] train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), batch_size=128) exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=[image, label], place=place) exe.run(startup_program) count = 0 for data in train_reader(): count += 1 if count > 5: break out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list) out_clip = exe.run(prog_clip, feed=feeder.feed(data), fetch_list=grad_clip_list) global_norm = 0 for v in out: global_norm += np.sum(np.power(v, 2)) global_norm = np.sqrt(global_norm) global_norm_clip = 0 for v in out_clip: global_norm_clip += np.sum(np.power(v, 2)) global_norm_clip = np.sqrt(global_norm_clip) assert np.isclose( a=global_norm_clip, b=np.minimum(global_norm, CLIP), rtol=5e-3) def check_sparse_gradient_clip(self, place): prog = fluid.framework.Program() startup_program = fluid.framework.Program() with fluid.program_guard( main_program=prog, startup_program=startup_program): data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") cost = bow_net(data, label, len(self.word_dict)) fluid.clip.set_gradient_clip( clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01) sgd_optimizer.minimize(cost) exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=[data, label], place=place) exe.run(startup_program) data = next(self.train_data()) val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0] self.assertEqual((1, ), val.shape) print(val) self.assertFalse(np.isnan(val)) def test_operators(self): self.check_operators(core.CPUPlace()) def test_sparse_gradient_clip(self): for place in self.get_places(): self.check_sparse_gradient_clip(place) if __name__ == '__main__': unittest.main()