from paddle.trainer_config_helpers import * from paddle.trainer.PyDataProvider2 import dense_vector, integer_value import paddle.v2 as paddle import numpy import mnist_util def train_reader(): train_file = './data/raw_data/train' generator = mnist_util.read_from_mnist(train_file) for item in generator: yield item def network_config(): imgs = data_layer(name='pixel', size=784) hidden1 = fc_layer(input=imgs, size=200) hidden2 = fc_layer(input=hidden1, size=200) inference = fc_layer(input=hidden2, size=10, act=SoftmaxActivation()) cost = classification_cost( input=inference, label=data_layer( name='label', size=10)) outputs(cost) def main(): paddle.init(use_gpu=False, trainer_count=1) model_config = parse_network_config(network_config) parameters = paddle.parameters.create(model_config) for param_name in parameters.keys(): array = parameters[param_name] array[:] = numpy.random.uniform(low=-1.0, high=1.0, size=array.shape) parameters[param_name] = array adam_optimizer = paddle.optimizer.Optimizer( learning_rate=0.01, learning_method=AdamOptimizer()) def event_handler(event): if isinstance(event, paddle.event.EndIteration): para = parameters['___fc_layer_2__.w0'] print "Pass %d, Batch %d, Cost %f, Weight Mean Of Fc 2 is %f" % ( event.pass_id, event.batch_id, event.cost, para.mean()) else: pass trainer = paddle.trainer.SGD(update_equation=adam_optimizer) trainer.train(train_data_reader=train_reader, topology=model_config, parameters=parameters, event_handler=event_handler, batch_size=32, # batch size should be refactor in Data reader data_types={ # data_types will be removed, It should be in # network topology 'pixel': dense_vector(784), 'label': integer_value(10) }) if __name__ == '__main__': main()