# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.fluid import unique_name, core import paddle.fluid as fluid from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper from paddle.distributed.fleet.meta_optimizers.common import is_backward_op, is_optimizer_op, is_update_op from paddle.distributed.fleet.meta_optimizers.meta_optimizer_base import MetaOptimizerBase from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, ProgramSegment from paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper import FP16Utils from paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper import WeightDecayHelper from paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper import GradientClipHelper from paddle.distributed.fleet.meta_optimizers.sharding.prune import ProgramDeps from paddle.distributed.fleet.meta_optimizers.sharding.utils import * import logging from functools import reduce __all__ = ["ShardingOptimizer"] class ShardingOptimizer(MetaOptimizerBase): """Sharding Optimizer.""" def __init__(self, optimizer): super(ShardingOptimizer, self).__init__(optimizer) self.inner_opt = optimizer self.meta_optimizers_white_list = [ "RecomputeOptimizer", "AMPOptimizer", "LarsOptimizer", "LambOptimizer", # "ModelParallelOptimizer", "PipelineOptimizer", ] self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ] self._main_program = None self._startup_program = None self._segments = [] # params and fp16 params is for broadcast self._params = set([]) self._broadcast_vars = set([]) # reduced grads to param name self._reduced_grads_to_param = {} self._shard = Shard() # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding) self._as_outer_parallelism = False self._inner_parallelism_size = None def _can_apply(self): if not self.role_maker._is_collective: return False if self.role_maker._worker_num() <= 1: return False return self.user_defined_strategy.sharding def _disable_strategy(self, dist_strategy): dist_strategy.sharding = False dist_strategy.sharding_configs = {} def _enable_strategy(self, dist_strategy, context): dist_strategy.sharding = True dist_strategy.sharding_configs = {"fuse_broadcast_MB": 32} def minimize_impl(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): """Implementation of minimize.""" # TODO: (JZ-LIANG) support multiple comm in future # self._nrings = self.user_defined_strategy.nccl_comm_num self._nrings_sharding = 1 self._nrings_dp = 1 self._fuse_broadcast_MB = self.user_defined_strategy.sharding_configs[ "fuse_broadcast_MB"] self.hybrid_dp = self.user_defined_strategy.sharding_configs[ "hybrid_dp"] self._as_outer_parallelism = self.user_defined_strategy.sharding_configs[ "as_outer_parallelism"] self._inner_parallelism_size = int( self.user_defined_strategy.sharding_configs["parallelism"]) self.use_pipeline = self.user_defined_strategy.sharding_configs[ "use_pipeline"] self.acc_steps = self.user_defined_strategy.sharding_configs[ "acc_steps"] self.schedule_mode = self.user_defined_strategy.sharding_configs[ "schedule_mode"] self.pp_bz = self.user_defined_strategy.sharding_configs["pp_bz"] self.pp_allreduce_in_optimize = self.user_defined_strategy.sharding_configs[ "pp_allreduce_in_optimize"] if self.inner_opt is None: raise ValueError( "self.inner_opt of ShardingOptimizer should not be None.") if self.use_pipeline: pp_optimizer = fluid.optimizer.PipelineOptimizer(self.inner_opt, self.acc_steps) main_program = loss.block.program main_program._pipeline_opt = dict() main_program._pipeline_opt['schedule_mode'] = self.schedule_mode main_program._pipeline_opt['pp_bz'] = self.pp_bz pp_rank = self.role_maker._worker_index() // ( self.user_defined_strategy.sharding_configs[ 'sharding_group_size'] * self._inner_parallelism_size) main_program._pipeline_opt['local_rank'] = pp_rank main_program._pipeline_opt[ 'global_rank'] = self.role_maker._worker_index() main_program._pipeline_opt['use_sharding'] = True main_program._pipeline_opt['ring_id'] = 20 optimize_ops, params_grads, program_list, self.pipeline_pair, self.pp_ring_map = pp_optimizer.minimize( loss, startup_program, parameter_list, no_grad_set) self.pipeline_nodes = len(program_list) else: optimize_ops, params_grads = self.inner_opt.minimize( loss, startup_program, parameter_list, no_grad_set) if startup_program is None: startup_program = default_startup_program() if self.use_pipeline: startup_program = startup_program._pipeline_opt['startup_program'] #main_program = main_program._pipeline_opt['section_program']['program'] print("pp_rank:", pp_rank) main_program = program_list[pp_rank]['program'] with open("main_%d" % self.role_maker._worker_index(), 'w') as f: f.writelines(str(main_program)) main_block = main_program.global_block() new_params_grads = [] for param, grad in params_grads: if main_block.has_var(param.name): new_params_grads.append((param, grad)) params_grads = new_params_grads else: main_block = loss.block startup_block = startup_program.global_block() self._main_program = main_block.program self._startup_program = startup_program if self.use_pipeline: pp_optimizer._rename_gradient_var_name(main_block) # step1: set_up self._set_up(params_grads) # step2: split_program self._split_program(main_block) # step3: add broadcast and reduce ops self._add_broadcast_allreduce(main_block) main_block._sync_with_cpp() startup_block._sync_with_cpp() # step4: insert reduce_sum for grad # grad_scale_coeff = self.role_maker._worker_num() # if self._as_outer_parallelism: # grad_scale_coeff = grad_scale_coeff / self._inner_parallelism_size # insert_scale_loss_grad_ops(main_block, scale=1.0 / grad_scale_coeff) sharding_group_size = self.user_defined_strategy.sharding_configs[ 'sharding_group_size'] insert_scale_loss_grad_ops(main_block, scale=1.0 / sharding_group_size) main_block._sync_with_cpp() # step5: remove unneeded ops and vars from block self._prune_main_program(main_block) self._prune_startup_program(startup_block) if self.hybrid_dp: self._initialization_broadcast(startup_program) if self.use_pipeline: # pp_optimizer._rename_gradient_var_name(main_block) # crop ops for idx, op in reversed(list(enumerate(main_block.ops))): # if op.type == 'fill_constant' and int(op.attr('op_role')) == 16: # out_name = op.output_arg_names[0] # if not 'GRAD' in out_name: continue # param_name = out_name.strip("@GRAD") # #if main_block.has_var(out_name): continue # if self._shard.has_param(param_name): continue # main_block._remove_op(idx) if is_update_op(op): op_role_var = op.attr('op_role_var') param_name = op_role_var[0] if not self._shard.has_param(param_name): main_block._remove_op(idx) for idx, op in reversed(list(enumerate(main_block.ops))): if op.type != 'cast': continue in_name = op.input_arg_names[0] if in_name not in self._params: continue #if self._shard.has_param(param_name): continue if in_name not in main_block.vars: main_block._remove_op(idx) #param_list = [] #for param_name, grad_name in params_grads: # if self._shard.has_param(param_name): # param_list.append(param_name) #pp_optimizer._clear_gradients(main_block, param_list) accumulated_grad_names = pp_optimizer._accumulate_gradients( main_block, pp_allreduce_in_optimize=self.pp_allreduce_in_optimize) # accumulated_grad_names = sorted(accumulated_grad_names) if self.pp_allreduce_in_optimize: print("persistable FP32 grad: ") print(accumulated_grad_names) first_optimize_op_index = get_first_check_finite_and_unscale_op_idx( main_block) insert_reduce_ops( main_block, first_optimize_op_index, self.sharding_ring_id, accumulated_grad_names, self._shard, core.op_proto_and_checker_maker.OpRole.Optimize, use_calc_stream=True) #if not self._shard.has_param(param_name): continue ##if not main_block.has_var(grad_name): continue #assert main_block.has_var(grad_name) #grad_var = main_block.vars[grad_name] #grad_var.persistable = True #main_block._insert_op( # index=0, # type='fill_constant', # inputs={}, # outputs={'Out': [grad_var]}, # attrs={ # 'shape': grad_var.shape, # 'dtype': grad_var.dtype, # 'value': float(0), # #self._op_device_key: device, # # a trick to run this op once per mini-batch # 'op_role': core.op_proto_and_checker_maker.OpRole.LRSched, # }) #def _create_var(block, ref_var, name): # """ # Create a new var for block, which has the same type, # shape and dtype as ref_var, then rename it with the # name `name`. # """ # new_var = block.create_var( # name=name, # shape=ref_var.shape, # dtype=ref_var.dtype, # type=ref_var.type, # lod_level=ref_var.lod_level, # persistable=ref_var.persistable, # is_data=ref_var.is_data, # need_check_feed=ref_var.desc.need_check_feed()) # new_var.stop_gradient = ref_var.stop_gradient # return new_var #def _rename_arg(op, old_name, new_name): # op_desc = op.desc # if isinstance(op_desc, tuple): # op_desc = op_desc[0] # op_desc._rename_input(old_name, new_name) # op_desc._rename_output(old_name, new_name) #print("params_grads:", params_grads) #for param_name, grad_name in params_grads: # if not self._shard.has_param(param_name): continue # #if not main_block.has_var(grad_name): continue # assert main_block.has_var(grad_name) # use_fp16 = False # fp16_grad_name = param_name + '.cast_fp16@GRAD' # if main_block.has_var(grad_name): # fp16_grad_var = main_block.vars[fp16_grad_name] # use_fp16 = True # grad_var = main_block.vars[grad_name] # if use_fp16: # cast_grad_var_name = paddle.fluid.unique_name.generate( # grad_name) # cast_var = _create_var(main_block, fp16_grad_var, # cast_grad_var_name) # cast_var.persistable = False # main_block.append_op( # #index=offset + 1, # type='cast', # inputs={'X': grad_var}, # outputs={'Out': cast_var}, # attrs={ # 'in_dtype': grad_var.dtype, # 'out_dtype': cast_var.dtype, # 'op_role': # core.op_proto_and_checker_maker.OpRole.Backward, # }) # #offset += 1 # main_block.append_op( # #index=offset + 1, # type='sum', # inputs={'X': [fp16_grad_var, cast_var]}, # outputs={'Out': fp16_grad_var}, # attrs={ # 'op_role': # core.op_proto_and_checker_maker.OpRole.Backward, # 'op_role_var': op_role_var # }) # for index, op in reversed(tuple(enumerate(list(main_block.ops)))): # offset = index # if is_backward_op(op) and ( # 'op_role_var' in op.attr_names): # op_role_var = op.all_attrs()['op_role_var'] # if len(op_role_var) == 0: # continue # assert len(op_role_var) % 2 == 0 # offset = index # for i in range(0, len(op_role_var), 2): # grad_name = op_role_var[i + 1] # if not main_block.has_var(grad_name): continue # grad_var = main_block.vars[grad_name] # if not 'cast_fp16' in grad_name: # new_grad_var_name = paddle.fluid.unique_name.generate(grad_name) # new_var = _create_var(main_block, grad_var, # new_grad_var_name) # new_var.persistable = False # _rename_arg(op, grad_name, new_grad_var_name) # main_block._insert_op( # index=offset + 1, # type='sum', # inputs={'X': [grad_var, new_var]}, # outputs={'Out': grad_var}, # attrs={ # 'op_role': core.op_proto_and_checker_maker.OpRole.Backward, # 'op_role_var': op_role_var # }) # offset += 1 # if 'cast_fp16' in grad_name: # param_name = op_role_var[i] # fp32_grad_var_name = param_name + "@GRAD" # fp32_grad_var = main_block.vars[grad_name] # cast_grad_var_name = paddle.fluid.unique_name.generate( # fp32_grad_var_name) # cast_var = _create_var(main_block, grad_var, # cast_grad_var_name) # cast_var.persistable = False # main_block._insert_op( # index=offset + 1, # type='cast', # inputs={'X': fp32_grad_var}, # outputs={'Out': cast_var}, # attrs={ # 'in_dtype': fp32_grad_var.dtype, # 'out_dtype': cast_var.dtype, # 'op_role': core.op_proto_and_checker_maker.OpRole.Backward, # # self._op_role_var_key: op_role_var # }) # offset += 1 # main_block._insert_op( # index=offset + 1, # type='sum', # inputs={'X': [grad_var, cast_var]}, # outputs={'Out': grad_var}, # attrs={ # 'op_role': core.op_proto_and_checker_maker.OpRole.Backward, # 'op_role_var': op_role_var}) main_block._sync_with_cpp() with open("start_sharding_%d" % self.role_maker._worker_index(), 'w') as f: f.writelines(str(startup_block.program)) with open("main_sharding_%d" % self.role_maker._worker_index(), 'w') as f: f.writelines(str(main_block.program)) # check op dependecy check_broadcast(main_block) #check_allreduce_sum(main_block, self._shard, self.sharding_ring_id, # self.dp_ring_id) #check_allreduce_sum(main_block, self._shard, self.dp_ring_id) self._wait() return optimize_ops, params_grads def _set_up(self, params_grads): # step 1: initialize nccl self.global_word_size = self.role_maker._worker_num() self.global_rank = self.role_maker._worker_index() self.endpoints = self.role_maker._get_trainer_endpoints() self.current_endpoint = self.endpoints[self.global_rank] self._collective_helper = CollectiveHelper(self.role_maker, self._nrings_sharding) # config sharding & dp groups self._init_comm() # global if self._as_outer_parallelism: print("global_group_endpoints:", self.global_group_endpoints) print("global_rank:", self.global_rank) print("global_ring_id:", self.global_group_id) self._collective_helper._init_communicator( self._startup_program, self.current_endpoint, self.global_group_endpoints, self.global_rank, self.global_group_id, False) if self._as_outer_parallelism: print("mp_group_endpoints:", self.mp_group_endpoints) print("mp_rank:", self.mp_rank) print("mp_ring_id:", self.mp_group_id) self._collective_helper._init_communicator( self._startup_program, self.current_endpoint, self.mp_group_endpoints, self.mp_rank, self.mp_group_id, False) # sharding print("sharding_group_endpoints:", self.sharding_group_endpoints) print("sharding_rank:", self.sharding_rank) print("sharding_ring_id:", self.sharding_ring_id) self._collective_helper._init_communicator( self._startup_program, self.current_endpoint, self.sharding_group_endpoints, self.sharding_rank, self.sharding_ring_id, False) # dp if self.hybrid_dp: self._collective_helper._init_communicator( self._startup_program, self.current_endpoint, self.dp_group_endpoints, self.dp_rank, self.dp_ring_id, False) # pp if self.use_pipeline: print("pp_group_endpoints:", self.pp_group_endpoints) print("pp_rank:", self.pp_rank) print("pp_ring_id:", self.pp_ring_id) if self.schedule_mode == 0: # GPipe self._collective_helper._init_communicator( self._startup_program, self.current_endpoint, self.pp_group_endpoints, self.pp_rank, self.pp_ring_id, False) self._collective_helper._init_communicator( self._startup_program, self.current_endpoint, self.pp_group_endpoints, self.pp_rank, self.pp_ring_id + 2, False) else: for pair in self.pipeline_pair: pair_key = pair[0] * 1000 + pair[1] ring_id = self.pp_ring_map[pair_key] print("pp pair:{}, ring_id: {}".format(pair, ring_id)) if self.pp_rank not in pair: continue pp_group_endpoints = [ self.pp_group_endpoints[pair[0]], self.pp_group_endpoints[pair[1]], ] if pair[0] < pair[1]: start_ring_id = self.pp_ring_id + pair[1] - pair[0] - 1 else: start_ring_id = self.pp_ring_id + 2 + pair[0] - pair[ 1] - 1 pp_rank = 0 if self.pp_rank == pair[0] else 1 self._collective_helper._init_communicator( self._startup_program, self.current_endpoint, pp_group_endpoints, pp_rank, ring_id, False, False) startup_block = self._startup_program.global_block() startup_block._sync_with_cpp() # step 2: split params self._params = set([x[0].name for x in params_grads]) self._shard.setup(params_grads, self.sharding_rank, self.sharding_group_size) # step 3: get broadcast vars self._broadcast_vars = self._shard.find_broadcast_params( self._main_program.global_block()) def _wait(self, ): # only the first parallelsm group that init nccl need to be wait. if self._as_outer_parallelism: endpoints = self.role_maker._get_trainer_endpoints() current_endpoint = endpoints[self.role_maker._worker_index()] else: endpoints = self.sharding_group_endpoints[:] current_endpoint = self.sharding_group_endpoints[self.sharding_rank] if self._as_outer_parallelism: if self.role_maker._worker_index() == 0: self._collective_helper._wait(current_endpoint, endpoints) else: if self.sharding_rank == 0: self._collective_helper._wait(current_endpoint, endpoints) # def _wait(self, ): # # only the first parallelsm group that init nccl need to be wait. # if self._as_outer_parallelism: # endpoints = self.role_maker._get_trainer_endpoints() # else: # endpoints = self.sharding_group_endpoints[:] # current_endpoint = endpoints[self.role_maker._worker_index()] # if self._as_outer_parallelism: # if self.role_maker._worker_index() == 0: # self._collective_helper._wait(current_endpoint, endpoints) # else: # if self.sharding_rank == 0: # self._collective_helper._wait(current_endpoint, endpoints) def _split_program(self, block): for op_idx, op in reversed(list(enumerate(block.ops))): if int(op.attr('op_role')) != int(OpRole.Optimize): last_backward_op_idx = op_idx + 1 break segment = ProgramSegment(block) segment._end_idx = last_backward_op_idx for op_idx in reversed(range(last_backward_op_idx)): op = block.ops[op_idx] assert (int(op.attr('op_role')) != int(OpRole.Optimize)) if segment._param_mem >= self._fuse_broadcast_MB: segment._start_idx = op_idx + 1 self._segments.insert(0, segment) segment = ProgramSegment(block) segment._end_idx = op_idx + 1 # find broadcast vars for input_name in op.desc.input_arg_names(): if input_name not in self._broadcast_vars: continue if input_name in segment._param2broadcast: # skip broadcast because it reuse the old broadcast var broadcast_name = segment._param2broadcast[input_name] if input_name != broadcast_name: op._rename_input(input_name, broadcast_name) continue if self._shard.has_param(input_name): broadcast_var_name = input_name else: broadcast_var_name = unique_name.generate(input_name + "@BroadCast") segment._fill_constant_vars.append(broadcast_var_name) segment._param2broadcast[input_name] = broadcast_var_name segment._broadcast_vars.append((broadcast_var_name, self._shard.device(input_name))) segment._param_mem += get_var_size( self._main_program.global_block().var(input_name)) # find reduce vars if self.use_pipeline and self.pp_allreduce_in_optimize: # place pipeline gradient allreduce in optimize pass else: if is_backward_op(op) and \ OP_ROLE_VAR_KEY in op.attr_names: op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY] if len(op_role_var) != 0: assert len(op_role_var) % 2 == 0 for i in range(0, len(op_role_var), 2): param, reduced_grad = op_role_var[i], op_role_var[ i + 1] segment._allreduce_vars.append(reduced_grad) #assert ( # reduced_grad not in self._reduced_grads_to_param) self._reduced_grads_to_param[reduced_grad] = param # find cast op if FP16Utils.is_fp16_cast_op(block, op, self._params): fp32_param = op.desc.input_arg_names()[0] fp16_param = op.desc.output_arg_names()[0] if self._shard.has_param(fp32_param): segment._cast_ops[fp16_param] = fp32_param if segment._param_mem > 0: segment._start_idx = 0 self._segments.insert(0, segment) return def _prune_main_program(self, block): """ calculate deps from allredce op to optimize op, remove ops and vars not needed in this worker 1. prune regularization (weight decay) 2. prune cast_fp32_to_fp16; update amp_infine_checking 3. prune gradient_clip related; update global_norm_sum 4. prune optimizer op + param + gradient """ weightdecay_helper = WeightDecayHelper() weightdecay_helper.prune_weight_decay(block, self._shard) # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism # group. and each Data Parallelism group should have its own sync of FoundInfinite Model_Paramllelism_ring_id = self.sharding_ring_id if self._as_outer_parallelism: Model_Paramllelism_ring_id = self.global_group_id FP16Utils.prune_fp16(block, self._shard, self._reduced_grads_to_param, Model_Paramllelism_ring_id) gradientclip_helper = GradientClipHelper(Model_Paramllelism_ring_id) gradientclip_helper.prune_gradient_clip(block, self._shard) # build prog deps reduced_grads = [] for idx, op in enumerate(block.ops): input_names = op.desc.input_arg_names() output_names = op.desc.output_arg_names() if op.type == "c_allreduce_sum": assert (len(output_names) == 1) output_name = output_names[0] reduced_grads.append(output_name) # prune optimizer state and param pruned_opti_vars = [] for var_name in list(block.vars.keys()): if self._shard.is_opti_var(var_name) and \ not self._shard.has_opt_var(var_name): pruned_opti_vars.append(var_name) program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars) # Init for var_name in program_deps._end_vars: program_deps._should_removed_var.add(var_name) # Prune for idx, op in reversed(list(enumerate(block.ops))): if op.type in [ "c_allreduce_sum", "c_sync_comm_stream", "c_calc_comm_stream", "c_gen_nccl_id", "c_comm_init", 'send_v2', 'recv_v2', ]: pass elif op.type == "conditional_block": assert (op.desc.has_attr("sub_block")) subblock_idx = op.desc.attr("sub_block").id subblock_deps = program_deps.get_sub_block_deps(subblock_idx) # only prune amp subblock if subblock_deps is None or not self._is_amp_subblock(op): continue # init reversed_output_vars = [] for output_name in op.desc.output("Out"): if output_name in program_deps._should_removed_var: subblock_deps._should_removed_var.add(output_name) program_deps.crop_output_var_from_op(idx, output_name) else: reversed_output_vars.append(output_name) # prune for sub_op_idx, _ in reversed( list(enumerate(subblock_deps._block.ops))): if subblock_deps.should_remove_op(sub_op_idx): subblock_deps.remove_op(sub_op_idx) reversed_input_vars = [] for input_name in op.desc.input('Input'): if input_name not in subblock_deps._should_removed_var: reversed_input_vars.append(input_name) else: program_deps.crop_input_var_from_op(idx, input_name) op.desc.set_input('Input', reversed_input_vars) op.desc.set_output('Out', reversed_output_vars) else: # if all outputs of this op are in _should_removed_var # _should_removed_var: opt state not cur shard if program_deps.should_remove_op(idx): program_deps.remove_op(idx) block._sync_with_cpp() for idx, op in reversed(list(enumerate(block.ops))): if op.type == 'concat' and is_optimizer_op(op): # remove inputs that not on this card reserved_x = [] for var_name in op.desc.input("X"): if block.has_var(var_name): reserved_x.append(var_name) op.desc.set_input('X', reserved_x) block._sync_with_cpp() return def _add_broadcast_allreduce(self, block): """ _add_broadcast_allreduce if combined with pipeline(grad accumulate), the grad allreduce should be done in optimize role """ if len(self._segments) < 1: return # sharding if self.use_pipeline and self.pp_allreduce_in_optimize: for idx in range(len(self._segments)): assert len(self._segments[idx]._allreduce_vars) == 0 if self._segments[-1]._allreduce_vars: shard_allredue_vars = self._shard.filter_grads(self._segments[-1] ._allreduce_vars) if self.hybrid_dp and len(shard_allredue_vars) >= 1: insert_sync_comm_ops(block, self._segments[-1]._end_idx, self.dp_ring_id, shard_allredue_vars) insert_allreduce_ops(block, self._segments[-1]._end_idx, self.dp_ring_id, shard_allredue_vars) insert_sync_comm_ops(block, self._segments[-1]._end_idx, self.sharding_ring_id, self._segments[-1]._allreduce_vars) # allreduce --> reduce insert_reduce_ops( block, self._segments[-1]._end_idx, self.sharding_ring_id, self._segments[-1]._allreduce_vars, self._shard, op_role=OpRole.Backward, use_calc_stream=False) for idx, segment in reversed(list(enumerate(self._segments))): allreduce_vars = self._segments[ idx - 1]._allreduce_vars if idx > 0 else [] broadcast_vars = self._segments[idx + 1]._broadcast_vars if idx < len( self._segments) - 1 else [] fill_constant_vars = self._segments[ idx + 2]._fill_constant_vars if idx < len( self._segments) - 2 else [] cast_ops = self._segments[idx + 2]._cast_ops if idx < len( self._segments) - 2 else {} for op_idx in reversed(range(segment._start_idx, segment._end_idx)): op = block.ops[op_idx] for input_name in op.desc.input_arg_names(): if input_name in segment._param2broadcast and \ input_name != segment._param2broadcast[input_name]: op._rename_input(input_name, segment._param2broadcast[input_name]) for param_name, broadcast_name in segment._param2broadcast.items(): if param_name != broadcast_name: block.create_var( name=broadcast_name, shape=self._main_program.global_block().var( param_name).shape, dtype=self._main_program.global_block().var(param_name) .dtype, persistable=False) # step1: remove cast ops block._sync_with_cpp() segment._end_idx += FP16Utils.remove_cast_op(block, self._params, segment, 0) # step2: add Sync ops shard_allredue_vars = self._shard.filter_grads(allreduce_vars) if self.hybrid_dp and len(shard_allredue_vars) >= 1: insert_sync_comm_ops(block, segment._end_idx, self.dp_ring_id, shard_allredue_vars) broad_cast_vars = [x[0] for x in broadcast_vars] if len(broad_cast_vars) > 0: insert_sync_comm_ops(block, segment._end_idx, self.sharding_ring_id, broad_cast_vars) else: comm_dep_vars = allreduce_vars + [x[0] for x in broadcast_vars] if len(comm_dep_vars) > 0: insert_sync_comm_ops(block, segment._end_idx, self.sharding_ring_id, comm_dep_vars) calc_dep_vars = fill_constant_vars + [ k for k, v in cast_ops.items() ] + self._segments[idx]._allreduce_vars if len(calc_dep_vars) > 0: insert_sync_calc_op(block, segment._end_idx, [calc_dep_vars[-1]]) # step3: insert `fill_constant` ops insert_fill_constant_ops(block, segment._end_idx, fill_constant_vars) # step4: add `cast` ops print("cast_ops:", cast_ops) insert_cast_ops(block, segment._end_idx, cast_ops) # step5: add broadcast ops insert_broadcast_ops(block, segment._start_idx, self.sharding_ring_id, broadcast_vars) # step6: add all_reduce ops # dp if self.hybrid_dp and len(shard_allredue_vars) >= 1: insert_allreduce_ops(block, segment._start_idx, self.dp_ring_id, shard_allredue_vars) insert_sync_comm_ops(block, segment._start_idx, self.sharding_ring_id, allreduce_vars) # sharding # allreduce --> reduce insert_reduce_ops( block, segment._start_idx, self.sharding_ring_id, allreduce_vars, self._shard, op_role=OpRole.Backward, use_calc_stream=False) block._sync_with_cpp() if self._segments[0]._broadcast_vars: broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars] insert_sync_comm_ops(block, self._segments[0]._start_idx, self.sharding_ring_id, broadcast_vars) insert_broadcast_ops(block, self._segments[0]._start_idx, self.sharding_ring_id, self._segments[0]._broadcast_vars) fill_constant_vars = [] for x in self._segments[:2]: fill_constant_vars += x._fill_constant_vars # Join cast_ops = {} for x in self._segments[:2]: for k, v in x._cast_ops.items(): cast_ops[k] = v calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()] if fill_constant_vars or cast_ops: insert_sync_calc_op(block, self._segments[0]._start_idx, [calc_deps_vars[-1]]) if fill_constant_vars: insert_fill_constant_ops(block, self._segments[0]._start_idx, fill_constant_vars) if cast_ops: insert_cast_ops(block, self._segments[0]._start_idx, cast_ops) return def _prune_startup_program(self, block): for idx, op in reversed(list(enumerate(block.ops))): for output_name in op.desc.output_arg_names(): if self._shard.has_var(output_name): continue #TODO why do we remove op, when only one var is removed block._remove_op(idx, sync=False) break for var_name in list(block.vars.keys()): if self._shard.has_var(var_name): continue block._remove_var(var_name, sync=False) block._sync_with_cpp() def _init_comm(self): if self.hybrid_dp: assert self._as_outer_parallelism == False, "hybrid dp is conflict when using sharding as outer parallelism" self.sharding_group_size = self.user_defined_strategy.sharding_configs[ "sharding_group_size"] self.sharding_ring_id = 0 self.sharding_rank = self.global_rank % self.sharding_group_size self.dp_group_size = self.global_word_size // self.sharding_group_size self.dp_rank = self.global_rank // self.sharding_group_size self.dp_ring_id = self.sharding_rank + 1 self.sharding_group_endpoints = [ ep for idx, ep in enumerate(self.endpoints) if (idx // self.sharding_group_size) == self.dp_rank ] self.dp_group_endpoints = [ ep for idx, ep in enumerate(self.endpoints) if (idx % self.sharding_group_size) == self.sharding_rank ] assert self.global_word_size > self.sharding_group_size, \ "global_word_size: {} should be larger than sharding_group_size: {}".format(self.global_word_size, self.sharding_group_size) assert self.global_word_size % self.sharding_group_size == 0, \ "global_word_size: {} should be divisible to the sharding_group_size: {}".format(self.global_word_size, self.sharding_group_size) assert self.dp_group_size * self.sharding_group_size == self.global_word_size, \ "global_word_size: {} should be equal to the product of sharding_group_size: {} and dp_group_size: {}".format( self.global_word_size, self.sharding_group_size, self.dp_group_size) self.pp_ring_id = -1 self.pp_rank = -1 self.pp_group_size = None self.pp_group_endpoints = None # sharding parallelism is the only model parallelism in the current setting self.mp_group_id = self.sharding_ring_id self.mp_rank = self.sharding_rank self.mp_group_size = self.sharding_group_size self.mp_group_endpoints = self.sharding_group_endpoints[:] logging.info("Using Sharing&DP mode !") else: if self._as_outer_parallelism and not self.use_pipeline: self.sharding_ring_id = 1 assert self.global_word_size > self._inner_parallelism_size, \ "global_word_size: {} should be larger than inner_parallelism_size: {}".format(self.global_word_size, self._inner_parallelism_size) assert self.global_word_size % self._inner_parallelism_size == 0, \ "global_word_size: {} should be divisible to the inner_parallelism_size: {}".format(self.global_word_size, self._inner_parallelism_size) self.sharding_rank = self.global_rank // self._inner_parallelism_size self.sharding_group_size = self.role_maker._worker_num( ) // self._inner_parallelism_size _offset = self.global_rank % self._inner_parallelism_size self.sharding_group_endpoints = [ ep for idx, ep in enumerate(self.endpoints) if idx % self._inner_parallelism_size == _offset ] # the current entire model parallelism group is the combination of innert & sharding parallelism self.mp_group_id = 2 self.mp_rank = self.global_rank self.mp_group_size = self.role_maker._worker_num() self.mp_group_endpoints = self.endpoints[:] logging.info("Using Sharing as Outer parallelism mode !") # print( # "init the nccl comm for megatron paramllelism, this should be done in Megatron Metaoptimizer" # ) # partition_idx = self.global_rank // self._inner_parallelism_size # magetron_endpoints = self.endpoints[ # partition_idx * self._inner_parallelism_size:partition_idx * # self._inner_parallelism_size + self._inner_parallelism_size] # magetron_rank = self.global_rank % self._inner_parallelism_size # self._collective_helper._init_communicator( # program=self._startup_program, # current_endpoint=self.current_endpoint, # endpoints=magetron_endpoints, # rank=magetron_rank, # ring_id=0, # wait_port=True) # logging.info("megatron group size: {}".format( # self._inner_parallelism_size)) # logging.info("megatron rank: {}".format(magetron_rank)) # logging.info("megatron endpoints: {}".format( # magetron_endpoints)) if self.use_pipeline: if self._inner_parallelism_size == 1: self.sharding_ring_id = 0 self.sharding_group_size = self.user_defined_strategy.sharding_configs[ 'sharding_group_size'] self.sharding_rank = self.global_rank % self.sharding_group_size assert self.sharding_group_size * self.pipeline_nodes * self._inner_parallelism_size == self.role_maker._worker_num( ) self.pp_ring_id = 20 self.pp_rank = self.global_rank // ( self.sharding_group_size * self._inner_parallelism_size) self.sharding_group_endpoints = [ ep for idx, ep in enumerate(self.endpoints) if (idx // self.sharding_group_size) == self.pp_rank ] self.pp_group_size = self.pipeline_nodes self.pp_group_endpoints = [ ep for idx, ep in enumerate(self.endpoints) if (idx % self.sharding_group_size ) == self.sharding_rank ] else: self.mp_group_id = 0 self.sharding_ring_id = 1 self.pp_ring_id = 20 self.mp_rank = self.global_rank % self._inner_parallelism_size self.mp_group = self.global_rank // self._inner_parallelism_size self.mp_group_endpoints = [ ep for idx, ep in enumerate(self.endpoints) if idx // self._inner_parallelism_size == self.mp_group ] print("megatron_group_endpoints:", self.mp_group_endpoints) print("megatron_rank:", self.mp_rank) # self.cards_per_node = 8 self.sharding_group_size = self.user_defined_strategy.sharding_configs[ 'sharding_group_size'] self.sharding_rank = ( self.global_rank // self._inner_parallelism_size) % self.sharding_group_size self.sharding_group_id = self.global_rank // ( self._inner_parallelism_size * self.sharding_group_size) self.megatron_rank = self.global_rank % self._inner_parallelism_size self.sharding_group_endpoints = [ ep for idx, ep in enumerate(self.endpoints) if (idx // (self._inner_parallelism_size * self.sharding_group_size) ) == self.sharding_group_id and idx % self._inner_parallelism_size == self.megatron_rank ] print("sharding_endpoint:", self.sharding_group_endpoints) print("sharding_rank:", self.sharding_rank) assert self.sharding_group_size * self.pipeline_nodes * self._inner_parallelism_size == self.role_maker._worker_num( ) self.pp_rank = self.global_rank // ( self.sharding_group_size * self._inner_parallelism_size) % self.pipeline_nodes offset = self.sharding_group_size * self._inner_parallelism_size # TODO: Adjust for dp idx_with_pp_0 = self.global_rank % ( self.sharding_group_size * self._inner_parallelism_size) self.pp_group_endpoints = [] for i in range(self.pipeline_nodes): self.pp_group_endpoints.append(self.endpoints[ idx_with_pp_0]) idx_with_pp_0 += offset print("pp_group_endpoints:", self.pp_group_endpoints) print("pp_rank:", self.pp_rank) #self.pp_group_endpoints = [ # ep for idx, ep in enumerate(self.endpoints) # if (idx % self.sharding_group_size) == self.sharding_rank #] self.global_group_id = 3 self.global_rank = self.global_rank self.global_group_size = self.role_maker._worker_num() self.global_group_endpoints = self.endpoints[:] logging.info("Using Sharing as Outer parallelism mode !") self.dp_ring_id = -1 self.dp_rank = -1 self.dp_group_size = None self.dp_group_endpoints = None logging.info("Using Sharing with pipeline !") #else: # self.sharding_ring_id = 0 # self.sharding_rank = self.global_rank # self.sharding_group_size = self.role_maker._worker_num() # self.sharding_group_endpoints = self.endpoints # # sharding parallelism is the only model parallelism in the current setting # self.mp_group_id = self.sharding_ring_id # self.mp_rank = self.sharding_rank # self.mp_group_size = self.sharding_group_size # self.mp_group_endpoints = self.sharding_group_endpoints[:] # logging.info("Using Sharing alone mode !") self.dp_ring_id = -1 self.dp_rank = -1 self.dp_group_size = None self.dp_group_endpoints = None #self.pp_ring_id = -1 #self.pp_rank = -1 #self.pp_group_size = None #self.pp_group_endpoints = None #self.dp_ring_id = -1 #self.dp_rank = -1 #self.dp_group_size = None #self.dp_group_endpoints = None logging.info("Using Sharing alone mode !") #logging.info("global word size: {}".format(self.global_word_size)) #logging.info("global rank: {}".format(self.global_rank)) #logging.info("sharding group_size: {}".format(self.sharding_group_size)) #logging.info("sharding rank: {}".format(self.sharding_rank)) #logging.info("current model parallelism group_size: {}".format( # self.mp_group_size)) #logging.info("current model parallelism rank: {}".format(self.mp_rank)) #logging.info("dp group size: {}".format(self.dp_group_size)) #logging.info("dp rank: {}".format(self.dp_rank)) #logging.info("current endpoint: {}".format(self.current_endpoint)) #logging.info("global word endpoints: {}".format(self.endpoints)) #logging.info("sharding group endpoints: {}".format( # self.sharding_group_endpoints)) #logging.info("current model parallelism group endpoints: {}".format( # self.mp_group_endpoints)) #logging.info("dp group endpoints: {}".format(self.dp_group_endpoints)) return def _initialization_broadcast(self, startup_prog): """ this funtion is to ensure the initialization between dp group to be identical when hybrid-dp is used. """ block = startup_prog.global_block() params = [] for param in block.iter_parameters(): params.append(param) block.append_op( type='c_broadcast', inputs={'X': param}, outputs={'Out': param}, attrs={ 'ring_id': self.dp_ring_id, 'root': 0, OP_ROLE_KEY: OpRole.Forward }) block.append_op( type='c_sync_comm_stream', inputs={'X': params}, outputs={'Out': params}, attrs={'ring_id': self.dp_ring_id, OP_ROLE_KEY: OpRole.Forward})