// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "gtest/gtest.h" #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/paddle2cinn/cinn_cache_key.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/pten/core/ddim.h" namespace paddle { namespace framework { namespace paddle2cinn { TEST(CinnCacheKeyTest, TestAsUnorderedKeyByStructure) { std::unordered_set test_set; ProgramDesc empty_program; ir::Graph empty_graph(empty_program); ProgramDesc program; auto *global_block = program.MutableBlock(0); auto *x = global_block->Var("X"); x->SetType(proto::VarType::LOD_TENSOR); ir::Graph graph(program); LoDTensor tensor; tensor.Resize({1, 2, 3}); const LoDTensor *tensor_pointer = &tensor; std::map feed_tensors = { {"X", tensor_pointer}}; DDim ddim = pten::make_ddim({1, 2, 3}); std::map feed_shapes = {{"X", ddim}}; CinnCacheKeyByStructure cache_key0(empty_graph, feed_tensors, "x86"); CinnCacheKeyByStructure cache_key1(empty_graph, feed_shapes, "x86"); EXPECT_EQ(cache_key0, cache_key1); CinnCacheKeyByStructure cache_key2(graph, feed_shapes, "x86"); CinnCacheKeyByStructure cache_key3(graph, feed_shapes, "nvgpu"); CinnCacheKeyByStructure cache_key4(graph, feed_tensors, "nvgpu"); EXPECT_NE(cache_key2, cache_key3); EXPECT_EQ(cache_key3, cache_key4); CinnCacheKeyByStructure cache_key5( empty_graph, std::map(), "unk"); CinnCacheKeyByStructure cache_key6(empty_graph, std::map(), "unk"); EXPECT_EQ(cache_key5, cache_key6); EXPECT_NE(cache_key1, cache_key3); EXPECT_NE(cache_key4, cache_key2); EXPECT_NE(cache_key3, cache_key5); EXPECT_NE(cache_key6, cache_key4); EXPECT_NE(cache_key5, cache_key1); EXPECT_NE(cache_key2, cache_key6); test_set.insert(cache_key0); test_set.insert(cache_key1); test_set.insert(cache_key3); test_set.insert(cache_key4); test_set.insert(cache_key5); test_set.insert(cache_key6); EXPECT_EQ(test_set.size(), 3U); auto iter = test_set.find(cache_key0); EXPECT_NE(iter, test_set.end()); test_set.erase(iter); EXPECT_EQ(test_set.size(), 2U); EXPECT_EQ(test_set.find(cache_key1), test_set.end()); iter = test_set.find(cache_key3); EXPECT_NE(iter, test_set.end()); test_set.erase(iter); EXPECT_EQ(test_set.size(), 1U); EXPECT_EQ(test_set.find(cache_key4), test_set.end()); iter = test_set.find(cache_key5); EXPECT_NE(iter, test_set.end()); test_set.erase(iter); EXPECT_EQ(test_set.size(), 0U); EXPECT_EQ(test_set.find(cache_key6), test_set.end()); } TEST(CinnCacheKeyTest, TestAsUnorderedKeyByAddress) { std::unordered_set test_set; ProgramDesc empty_program; ir::Graph empty_graph(empty_program); ProgramDesc program; auto *global_block = program.MutableBlock(0); auto *x = global_block->Var("X"); x->SetType(proto::VarType::LOD_TENSOR); ir::Graph graph(program); LoDTensor tensor; tensor.Resize({1, 2, 3}); const LoDTensor *tensor_pointer = &tensor; std::map feed_tensors = { {"X", tensor_pointer}}; DDim ddim = pten::make_ddim({1, 2, 3}); std::map feed_shapes = {{"X", ddim}}; CinnCacheKeyByAddress cache_key0(empty_graph, feed_tensors, "x86"); CinnCacheKeyByAddress cache_key1(empty_graph, feed_shapes, "x86"); EXPECT_EQ(cache_key0, cache_key1); CinnCacheKeyByAddress cache_key2(graph, feed_shapes, "x86"); CinnCacheKeyByAddress cache_key3(graph, feed_shapes, "nvgpu"); CinnCacheKeyByAddress cache_key4(graph, feed_tensors, "nvgpu"); EXPECT_NE(cache_key2, cache_key3); EXPECT_EQ(cache_key3, cache_key4); CinnCacheKeyByAddress cache_key5( empty_graph, std::map(), "unk"); CinnCacheKeyByAddress cache_key6(empty_graph, std::map(), "unk"); EXPECT_EQ(cache_key5, cache_key6); EXPECT_NE(cache_key1, cache_key3); EXPECT_NE(cache_key4, cache_key2); EXPECT_NE(cache_key3, cache_key5); EXPECT_NE(cache_key6, cache_key4); EXPECT_NE(cache_key5, cache_key1); EXPECT_NE(cache_key2, cache_key6); test_set.insert(cache_key0); test_set.insert(cache_key1); test_set.insert(cache_key3); test_set.insert(cache_key4); test_set.insert(cache_key5); test_set.insert(cache_key6); EXPECT_EQ(test_set.size(), 3U); auto iter = test_set.find(cache_key0); EXPECT_NE(iter, test_set.end()); test_set.erase(iter); EXPECT_EQ(test_set.size(), 2U); EXPECT_EQ(test_set.find(cache_key1), test_set.end()); iter = test_set.find(cache_key3); EXPECT_NE(iter, test_set.end()); test_set.erase(iter); EXPECT_EQ(test_set.size(), 1U); EXPECT_EQ(test_set.find(cache_key4), test_set.end()); iter = test_set.find(cache_key5); EXPECT_NE(iter, test_set.end()); test_set.erase(iter); EXPECT_EQ(test_set.size(), 0U); EXPECT_EQ(test_set.find(cache_key6), test_set.end()); } TEST(CinnCacheKeyTest, TestSameGraph) { ProgramDesc program1; auto *global_block1 = program1.MutableBlock(0); auto *x1 = global_block1->Var("X"); x1->SetType(proto::VarType::LOD_TENSOR); ir::Graph graph1(program1); ProgramDesc program2; auto *global_block2 = program2.MutableBlock(0); auto *x2 = global_block2->Var("X"); x2->SetType(proto::VarType::LOD_TENSOR); ir::Graph graph2(program2); LoDTensor tensor; tensor.Resize({1, 2, 3}); const LoDTensor *tensor_pointer = &tensor; std::map feed_tensors = { {"X", tensor_pointer}}; CinnCacheKeyByAddress cache_key_by_address1(graph1, feed_tensors, "x86"); CinnCacheKeyByAddress cache_key_by_address2(graph2, feed_tensors, "x86"); EXPECT_NE(cache_key_by_address1, cache_key_by_address2); CinnCacheKeyByStructure cache_key_by_struct1(graph1, feed_tensors, "x86"); CinnCacheKeyByStructure cache_key_by_struct2(graph2, feed_tensors, "x86"); EXPECT_EQ(cache_key_by_struct1, cache_key_by_struct2); } } // namespace paddle2cinn } // namespace framework } // namespace paddle