# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest, convert_float_to_uint16 import paddle from paddle.fluid import core class TestLabelSmoothOp(OpTest): def config(self): self.op_type = "label_smooth" self.python_api = paddle.nn.functional.label_smooth self.init_dtype() self.epsilon = 0.1 batch_size, self.label_dim = 10, 12 self.label = np.zeros((batch_size, self.label_dim)).astype(self.dtype) nonzero_index = np.random.randint(self.label_dim, size=(batch_size)) self.label[np.arange(batch_size), nonzero_index] = 1 def setUp(self): self.config() smoothed_label = ( 1 - self.epsilon ) * self.label + self.epsilon / self.label_dim self.inputs = {'X': self.label} self.attrs = {'epsilon': self.epsilon} self.outputs = {'Out': smoothed_label} def init_dtype(self): self.dtype = np.float64 def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") @unittest.skipIf( not core.is_compiled_with_cuda() or not core.supports_bfloat16(), "core is not compiled with CUDA or place do not support bfloat16", ) class TestLabelSmoothOpBF16(OpTest): def config(self): self.op_type = "label_smooth" self.python_api = paddle.nn.functional.label_smooth self.epsilon = 0.1 self.dtype = np.uint16 batch_size, self.label_dim = 10, 12 self.label = np.zeros((batch_size, self.label_dim)).astype(np.float32) nonzero_index = np.random.randint(self.label_dim, size=(batch_size)) self.label[np.arange(batch_size), nonzero_index] = 1 def setUp(self): self.config() smoothed_label = ( 1 - self.epsilon ) * self.label + self.epsilon / self.label_dim self.inputs = {'X': convert_float_to_uint16(self.label)} self.attrs = {'epsilon': self.epsilon} self.outputs = {'Out': convert_float_to_uint16(smoothed_label)} def test_check_output(self): place = core.CUDAPlace(0) self.check_output_with_place(place, check_eager=True) def test_check_grad(self): place = core.CUDAPlace(0) self.check_grad_with_place(place, ["X"], "Out", check_eager=True) class TestLabelSmoothFP16OP(TestLabelSmoothOp): def init_dtype(self): self.dtype = np.float16 class TestLabelSmoothOpWithPriorDist(TestLabelSmoothOp): def setUp(self): self.config() dist = np.random.random((1, self.label_dim)).astype(self.dtype) smoothed_label = (1 - self.epsilon) * self.label + self.epsilon * dist self.inputs = {'X': self.label, 'PriorDist': dist} self.attrs = {'epsilon': self.epsilon} self.outputs = {'Out': smoothed_label} class TestLabelSmoothFP16OPWithPriorDist(TestLabelSmoothOpWithPriorDist): def init_dtype(self): self.dtype = np.float16 class TestLabelSmoothBF16OPWithPriorDist(TestLabelSmoothOpBF16): def setUp(self): self.config() dist = np.random.random((1, self.label_dim)).astype(np.float32) smoothed_label = (1 - self.epsilon) * self.label + self.epsilon * dist self.inputs = { 'X': convert_float_to_uint16(self.label), 'PriorDist': convert_float_to_uint16(dist), } self.attrs = {'epsilon': self.epsilon} self.outputs = {'Out': convert_float_to_uint16(smoothed_label)} class TestLabelSmoothOp3D(TestLabelSmoothOp): def setUp(self): super().setUp() self.inputs['X'] = self.inputs['X'].reshape( [2, -1, self.inputs['X'].shape[-1]] ) self.outputs['Out'] = self.outputs['Out'].reshape( self.inputs['X'].shape ) class TestLabelSmoothOp3DBF16(TestLabelSmoothOpBF16): def setUp(self): super().setUp() self.inputs['X'] = self.inputs['X'].reshape( [2, -1, self.inputs['X'].shape[-1]] ) self.outputs['Out'] = self.outputs['Out'].reshape( self.inputs['X'].shape ) class TestLabelSmoothFP16OP3D(TestLabelSmoothOp3D): def init_dtype(self): self.dtype = np.float16 class TestLabelSmoothOpWithPriorDist3D(TestLabelSmoothOpWithPriorDist): def setUp(self): super().setUp() self.inputs['X'] = self.inputs['X'].reshape( [2, -1, self.inputs['X'].shape[-1]] ) self.outputs['Out'] = self.outputs['Out'].reshape( self.inputs['X'].shape ) class TestLabelSmoothFP16OPWithPriorDist3D(TestLabelSmoothOpWithPriorDist3D): def init_dtype(self): self.dtype = np.float16 class TestLabelSmoothBF16OpWithPriorDist3D(TestLabelSmoothBF16OPWithPriorDist): def setUp(self): super().setUp() self.inputs['X'] = self.inputs['X'].reshape( [2, -1, self.inputs['X'].shape[-1]] ) self.outputs['Out'] = self.outputs['Out'].reshape( self.inputs['X'].shape ) if __name__ == '__main__': paddle.enable_static() unittest.main()