import paddle.v2 as paddle import mnist_util def train_reader(): train_file = './data/raw_data/train' generator = mnist_util.read_from_mnist(train_file) for item in generator: yield item def main(): paddle.init(use_gpu=False, trainer_count=1) # define network topology images = paddle.layer.data( name='pixel', type=paddle.data_type.dense_vector(784)) label = paddle.layer.data( name='label', type=paddle.data_type.integer_value(10)) hidden1 = paddle.layer.fc(input=images, size=200) hidden2 = paddle.layer.fc(input=hidden1, size=200) inference = paddle.layer.fc(input=hidden2, size=10, act=paddle.activation.Softmax()) cost = paddle.layer.classification_cost(input=inference, label=label) parameters = paddle.parameters.create(cost) adam_optimizer = paddle.optimizer.Adam(learning_rate=0.01) def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: print "Pass %d, Batch %d, Cost %f, %s" % ( event.pass_id, event.batch_id, event.cost, event.metrics) else: pass trainer = paddle.trainer.SGD(update_equation=adam_optimizer) trainer.train( train_data_reader=train_reader, cost=cost, parameters=parameters, event_handler=event_handler, batch_size=32, # batch size should be refactor in Data reader reader_dict={images.name: 0, label.name: 1}) if __name__ == '__main__': main()