# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.fluid.optimizer import Optimizer __all__ = [] class MetaOptimizerBase(Optimizer): def __init__(self, optimizer): self.inner_opt = optimizer self._learning_rate = self.inner_opt._learning_rate self._learning_rate_map = self.inner_opt._learning_rate_map self.meta_optimizers_white_list = [] self.meta_optimizers_black_list = [] def _set_auxiliary_var(self, key, val): super()._set_auxiliary_var(key, val) self.inner_opt._set_auxiliary_var(key, val) def _set_basic_info( self, loss, role_maker, user_defined_optimizer, user_defined_strategy ): self.loss = loss self.role_maker = role_maker self.user_defined_optimizer = user_defined_optimizer self.user_defined_strategy = user_defined_strategy def _update_inner_optimizer(self, optimizer): self.inner_opt = optimizer def _can_apply(self): return False def _is_graph_out(self): return False def _can_update(self, optimizer): if str(optimizer.__class__.__name__) in self.meta_optimizers_white_list: return True return False def _disable_strategy(self, dist_strategy): raise NotImplementedError( "you should implement disable strategy in {}".format( type(self).__name__ ) ) def _enable_strategy(self, dist_strategy, context=None): raise NotImplementedError( "you should implement enable strategy in {}".format( type(self).__name__ ) ) def apply_gradients(self, params_grads): return self.inner_opt.apply_gradients(params_grads=params_grads) def backward( self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None, ): return self.inner_opt.backward( loss, startup_program, parameter_list, no_grad_set, callbacks ) def apply_optimize(self, loss, startup_program, params_grads): return self.inner_opt.apply_optimize( loss, startup_program=startup_program, params_grads=params_grads ) def minimize_impl( self, loss, startup_program=None, parameter_list=None, no_grad_set=None ): params_grads = self.backward( loss, startup_program=startup_program, parameter_list=parameter_list, no_grad_set=no_grad_set, ) optimize_ops = self.apply_optimize( loss, startup_program=startup_program, params_grads=params_grads ) return optimize_ops, params_grads def minimize( self, loss, startup_program=None, parameter_list=None, no_grad_set=None ): optimize_ops, params_grads = self.minimize_impl( loss, startup_program, parameter_list, no_grad_set ) return optimize_ops, params_grads