// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; using DDim = framework::DDim; template inline void shift_along_dim(T* data, const DDim& input_dim, int64_t dim, int64_t shift) { if (dim < 0) { dim += input_dim.size(); } shift = shift % input_dim[dim]; if (shift < 0) { shift += input_dim[dim]; } auto outer_loops = 1; for (auto i = 0; i < dim; i++) { outer_loops *= input_dim[i]; } auto slice_width = 1; for (auto i = dim + 1; i < input_dim.size(); i++) { slice_width *= input_dim[i]; } VLOG(3) << "shift_along_dim_debug: input_dim: " << input_dim << "; dim: " << dim << "; shift: " << shift << "; outer_loops: " << outer_loops << "; slice_width: " << slice_width; if (shift == 0) { return; } std::vector head; auto head_size = slice_width * (input_dim[dim] - shift); head.resize(head_size); for (auto i = 0; i < outer_loops; i++) { for (auto j = 0; j < head_size; j++) { head[j] = data[i * input_dim[dim] * slice_width + j]; } for (auto j = input_dim[dim] - shift; j < input_dim[dim]; j++) { auto dst_pos = j - input_dim[dim] + shift; for (auto k = 0; k < slice_width; k++) { data[(i * input_dim[dim] + dst_pos) * slice_width + k] = data[(i * input_dim[dim] + j) * slice_width + k]; } } for (auto j = 0; j < head_size; j++) { data[(i * input_dim[dim] + shift) * slice_width + j] = head[j]; } } } template class RollKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* input_var = context.InputVar("X"); auto* output_var = context.OutputVar("Out"); auto& input = input_var->Get(); auto* output = output_var->GetMutable(); std::vector shifts = context.Attr>("shifts"); std::vector dims = context.Attr>("axis"); std::vector out_vec; TensorToVector(input, context.device_context(), &out_vec); size_t nums = shifts.size(); const DDim input_dim = input.dims(); for (size_t i = 0; i < nums; i++) { PADDLE_ENFORCE_EQ( dims[i] < input_dim.size() && dims[i] >= (0 - input_dim.size()), true, platform::errors::OutOfRange( "Attr(axis[%d]) is out of range, It's expected " "to be in range of [-%d, %d]. But received Attr(axis[%d]) = %d.", i, input_dim.size(), input_dim.size() - 1, i, dims[i])); shift_along_dim(out_vec.data(), input_dim, dims[i], shifts[i]); } output->mutable_data(context.GetPlace()); framework::TensorFromVector(out_vec, context.device_context(), output); output->Resize(input_dim); } }; template class RollGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* input_var = context.InputVar(framework::GradVarName("Out")); auto* output_var = context.OutputVar(framework::GradVarName("X")); auto& input = input_var->Get(); auto* output = output_var->GetMutable(); std::vector shifts = context.Attr>("shifts"); std::vector dims = context.Attr>("axis"); std::vector out_vec; TensorToVector(input, context.device_context(), &out_vec); size_t nums = shifts.size(); const DDim input_dim = input.dims(); for (size_t i = 0; i < nums; i++) { shift_along_dim(out_vec.data(), input_dim, dims[i], 0 - shifts[i]); } output->mutable_data(context.GetPlace()); framework::TensorFromVector(out_vec, context.device_context(), output); output->Resize(input_dim); } }; } // namespace operators } // namespace paddle