/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/collective/global_gather_op.h" #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) #include "paddle/fluid/platform/collective_helper.h" #include "paddle/fluid/platform/device/gpu/nccl_helper.h" #endif #include "paddle/fluid/framework/convert_utils.h" namespace paddle { namespace operators { template struct GlobalGatherFunctor { void operator()(const framework::ExecutionContext& ctx) { #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) #if NCCL_VERSION_CODE >= 2703 auto x = ctx.Input("X"); auto local_count = ctx.Input("local_count"); auto global_count = ctx.Input("global_count"); auto local_count_type = framework::TransToProtoVarType(local_count->dtype()); auto global_count_type = framework::TransToProtoVarType(global_count->dtype()); if (local_count_type != framework::proto::VarType::INT64) { PADDLE_THROW(platform::errors::InvalidArgument( "Please use int64 type in local_count.")); } if (global_count_type != framework::proto::VarType::INT64) { PADDLE_THROW(platform::errors::InvalidArgument( "Please use int64 type in global_count.")); } auto out = ctx.Output("Out"); const int64_t* cpu_local_count_data; const int64_t* cpu_global_count_data; auto local_count_len = 0; framework::Tensor cpu_local_count; if (platform::is_cpu_place(local_count->place())) { cpu_local_count_data = local_count->data(); local_count_len = local_count->numel(); } else { framework::TensorCopySync(*local_count, platform::CPUPlace(), &cpu_local_count); cpu_local_count_data = cpu_local_count.data(); local_count_len = cpu_local_count.numel(); } framework::Tensor cpu_global_count; if (platform::is_cpu_place(global_count->place())) { cpu_global_count_data = global_count->data(); } else { framework::TensorCopySync(*global_count, platform::CPUPlace(), &cpu_global_count); cpu_global_count_data = cpu_global_count.data(); } ncclDataType_t dtype = platform::ToNCCLDataType(framework::TransToProtoVarType(x->dtype())); int ring_id = ctx.Attr("ring_id"); PADDLE_ENFORCE_GE( ring_id, 0, platform::errors::InvalidArgument( "The ring_id (%d) for global gather op must be non-negative.", ring_id)); auto place = ctx.GetPlace(); auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place); gpuStream_t stream = nullptr; if (ctx.Attr("use_calc_stream")) { auto dev_ctx = platform::DeviceContextPool::Instance().Get(place); stream = static_cast(dev_ctx)->stream(); } else { stream = comm->stream(); } int nranks = comm->nranks(); auto in_feat = x->dims()[1]; auto n_expert = local_count->dims()[0] / nranks; auto fwd_count = 0; for (auto i = 0; i < local_count_len; ++i) { fwd_count += cpu_local_count_data[i]; } framework::DDim out_dims = phi::make_ddim({fwd_count, in_feat}); int64_t* expert_ptr = new int64_t[n_expert * nranks]; expert_ptr[0] = 0; auto tot_experts = n_expert * nranks; for (auto i = 1; i < tot_experts; ++i) { expert_ptr[i] = expert_ptr[i - 1] + cpu_local_count_data[i - 1]; } auto send_ptr = 0; auto send_buf = x->data(); auto recv_buf = out->mutable_data(out_dims, place); for (auto i = 0; i < n_expert; ++i) { PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart()); for (auto j = 0; j < nranks; ++j) { int idx = i + j * n_expert; if (cpu_global_count_data[idx]) { PADDLE_ENFORCE_GPU_SUCCESS( platform::dynload::ncclSend(send_buf + send_ptr * in_feat, cpu_global_count_data[idx] * in_feat, dtype, j, comm->comm(), stream)); send_ptr += cpu_global_count_data[idx]; } if (cpu_local_count_data[idx]) { PADDLE_ENFORCE_GPU_SUCCESS( platform::dynload::ncclRecv(recv_buf + expert_ptr[idx] * in_feat, cpu_local_count_data[idx] * in_feat, dtype, j, comm->comm(), stream)); } } PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd()); } #else PADDLE_THROW( platform::errors::Unavailable("NCCL version >= 2.7.3 is needed.")); #endif #else PADDLE_THROW( platform::errors::Unavailable("PaddlePaddle should compile with GPU.")); #endif } }; template struct GlobalGatherProcessGroupFunctor { void operator()(const framework::ExecutionContext& ctx) { #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) #if NCCL_VERSION_CODE >= 2703 auto x = ctx.Input("X"); auto local_count = ctx.Input("local_count"); auto global_count = ctx.Input("global_count"); auto local_count_type = framework::TransToProtoVarType(local_count->dtype()); auto global_count_type = framework::TransToProtoVarType(global_count->dtype()); if (local_count_type != framework::proto::VarType::INT64) { PADDLE_THROW(platform::errors::InvalidArgument( "Please use int64 type in local_count.")); } if (global_count_type != framework::proto::VarType::INT64) { PADDLE_THROW(platform::errors::InvalidArgument( "Please use int64 type in global_count.")); } auto out = ctx.Output("Out"); const int64_t* cpu_local_count_data; const int64_t* cpu_global_count_data; auto local_count_len = 0; framework::Tensor cpu_local_count; if (platform::is_cpu_place(local_count->place())) { cpu_local_count_data = local_count->data(); local_count_len = local_count->numel(); } else { framework::TensorCopySync(*local_count, platform::CPUPlace(), &cpu_local_count); cpu_local_count_data = cpu_local_count.data(); local_count_len = cpu_local_count.numel(); } framework::Tensor cpu_global_count; if (platform::is_cpu_place(global_count->place())) { cpu_global_count_data = global_count->data(); } else { framework::TensorCopySync(*global_count, platform::CPUPlace(), &cpu_global_count); cpu_global_count_data = cpu_global_count.data(); } int ring_id = ctx.Attr("ring_id"); PADDLE_ENFORCE_GE( ring_id, 0, platform::errors::InvalidArgument( "The ring_id (%d) for global gather op must be non-negative.", ring_id)); auto place = ctx.GetPlace(); auto map = distributed::ProcessGroupMapFromGid::getInstance(); distributed::ProcessGroup* pg = map->get(ring_id); int nranks = pg->GetSize(); auto in_feat = x->dims()[1]; auto n_expert = local_count->dims()[0] / nranks; auto fwd_count = 0; for (auto i = 0; i < local_count_len; ++i) { fwd_count += cpu_local_count_data[i]; } framework::DDim out_dims = phi::make_ddim({fwd_count, in_feat}); int64_t* expert_ptr = new int64_t[n_expert * nranks]; expert_ptr[0] = 0; auto tot_experts = n_expert * nranks; for (auto i = 1; i < tot_experts; ++i) { expert_ptr[i] = expert_ptr[i - 1] + cpu_local_count_data[i - 1]; } auto send_ptr = 0; out->mutable_data(out_dims, place); for (auto i = 0; i < n_expert; ++i) { PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart()); for (auto j = 0; j < nranks; ++j) { int idx = i + j * n_expert; if (cpu_global_count_data[idx]) { phi::DenseTensor tmp = *x; pg->Send_Partial(tmp, j, send_ptr * in_feat, cpu_global_count_data[idx] * in_feat); send_ptr += cpu_global_count_data[idx]; } if (cpu_local_count_data[idx]) { pg->Recv_Partial(*out, j, expert_ptr[idx] * in_feat, cpu_local_count_data[idx] * in_feat); } } PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd()); } #ifdef PADDLE_WITH_CUDA PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize()); #else PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize()); #endif #else PADDLE_THROW( platform::errors::Unavailable("NCCL version >= 2.7.3 is needed.")); #endif #else PADDLE_THROW( platform::errors::Unavailable("PaddlePaddle should compile with GPU.")); #endif } }; template class GlobalGatherOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const int rid = ctx.Attr("ring_id"); auto map = distributed::ProcessGroupMapFromGid::getInstance(); if (map->has(rid)) { GlobalGatherProcessGroupFunctor functor_; functor_(ctx); } else { GlobalGatherFunctor functor_; functor_(ctx); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_CUDA_KERNEL(global_gather, ops::GlobalGatherOpCUDAKernel, ops::GlobalGatherOpCUDAKernel, ops::GlobalGatherOpCUDAKernel, ops::GlobalGatherOpCUDAKernel, ops::GlobalGatherOpCUDAKernel);