# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest class TestSequencePadOp(OpTest): def set_attr(self): self.x_shape = [12, 4] self.x_len_lod = [[2, 3, 4, 3]] self.pad_value = [1.0] self.padded_length = -1 self.dtype = 'float32' def set_data(self): x_data = np.random.uniform(0.1, 0.5, self.x_shape).astype(self.dtype) pad_value_data = np.array(self.pad_value).astype(self.dtype) self.inputs = { 'X': (x_data, self.x_len_lod), 'PadValue': pad_value_data } self.attrs = {'padded_length': self.padded_length} def compute(self): # get padded length padded_length = self.padded_length x_len_lod_0 = self.x_len_lod[0] if padded_length == -1: max_seq_len = 0 for l in x_len_lod_0: max_seq_len = max(max_seq_len, l) padded_length = max_seq_len # do padding x_data = self.inputs['X'][0] pad_value_data = self.inputs['PadValue'] if pad_value_data.shape == (1, ): pad_value_data = np.broadcast_to( pad_value_data, shape=x_data.shape[1:]) padded_sequences = [] start_idx = 0 for l in x_len_lod_0: end_idx = start_idx + l seq = x_data[start_idx:end_idx] to_pad_len = padded_length - l for _ in range(to_pad_len): seq = np.append(seq, pad_value_data[np.newaxis, :], axis=0) padded_sequences.append(seq) start_idx = end_idx out_len_lod = self.x_len_lod[:] out_len_lod_0 = [padded_length] * len(x_len_lod_0) out_len_lod[0] = out_len_lod_0 out_data = np.concatenate(padded_sequences, axis=0) self.outputs = {'Out': (out_data, out_len_lod)} def setUp(self): self.op_type = 'sequence_pad' self.set_attr() self.set_data() self.compute() def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") class TestSequencePadOp2(TestSequencePadOp): def set_attr(self): self.x_shape = [12, 4] self.x_len_lod = [[2, 3, 4, 3]] self.pad_value = [1.0, 2.0, 3.0, 4.0] self.padded_length = -1 self.dtype = 'float32' class TestSequencePadOp3(TestSequencePadOp): def set_attr(self): self.x_shape = [12, 4] self.x_len_lod = [[2, 3, 4, 3]] self.pad_value = [1.0] self.padded_length = 7 self.dtype = 'float32' class TestSequencePadOp4(TestSequencePadOp): def set_attr(self): self.x_shape = [12, 4] self.x_len_lod = [[2, 3, 4, 3]] self.pad_value = [1.0, 2.0, 3.0, 4.0] self.padded_length = 7 self.dtype = 'float32' class TestSequencePadOp5(TestSequencePadOp): def set_attr(self): self.x_shape = [12, 2, 2] self.x_len_lod = [[2, 3, 4, 3]] self.pad_value = [1.0] self.padded_length = -1 self.dtype = 'float32' class TestSequencePadOp6(TestSequencePadOp): def set_attr(self): self.x_shape = [12, 2, 2] self.x_len_lod = [[2, 3, 4, 3]] self.pad_value = [[1.0, 2.0], [3.0, 4.0]] self.padded_length = -1 self.dtype = 'float32' class TestSequencePadOp7(TestSequencePadOp): def set_attr(self): self.x_shape = [12, 2, 2] self.x_len_lod = [[2, 3, 4, 3]] self.pad_value = [1.0] self.padded_length = 7 self.dtype = 'float32'