# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .. import _C_ops, _legacy_C_ops from ..fluid.data_feeder import check_variable_and_dtype from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode from ..framework import LayerHelper from .layer_function_generator import ( add_sample_code, generate_activation_fn, generate_inplace_fn, generate_layer_fn, ) __deprecated_func_name__ = { 'tanh_shrink': 'tanhshrink', 'logsigmoid': 'log_sigmoid', } __activations_noattr__ = [ 'silu', 'logsigmoid', 'tanh_shrink', 'softplus', 'softsign', 'tanh', ] __unary_func__ = ['abs'] __inplace_unary_func__ = [ 'exp_', 'sqrt_', 'rsqrt_', 'ceil_', 'floor_', 'round_', 'reciprocal_', ] __all__ = [] # It is a hot fix in some unittest using: # paddle.scale(x=x, scale=10.0, out=out_var) # e.g.: test_program_code.py, test_dist_train.py globals()['_scale'] = generate_layer_fn('scale') globals()['_elementwise_div'] = generate_layer_fn('elementwise_div') for _OP in set(__activations_noattr__): _new_OP = _OP if _OP in __deprecated_func_name__: _new_OP = __deprecated_func_name__[_OP] _func = generate_activation_fn(_OP) globals()[_OP] = _func for _OP in set(__unary_func__): _new_OP = _OP if _OP in __deprecated_func_name__: _new_OP = __deprecated_func_name__[_OP] _func = generate_activation_fn(_OP) globals()[_OP] = _func for _OP in set(__inplace_unary_func__): _new_OP = _OP if _OP in __deprecated_func_name__: _new_OP = __deprecated_func_name__[_OP] _func = generate_inplace_fn(_OP) globals()[_OP] = _func add_sample_code( globals()["silu"], r""" Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0]) out = F.silu(x) print(out) # [ 0.7310586 1.7615942 2.8577224, 3.9280552 ] """, ) add_sample_code( globals()["logsigmoid"], r""" Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = F.log_sigmoid(x) print(out) # [-0.91301525 -0.79813887 -0.64439666 -0.55435524] """, ) add_sample_code( globals()["tanh"], r""" Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.tanh(x) print(out) # [-0.37994896 -0.19737532 0.09966799 0.29131261] """, ) add_sample_code( globals()["tanh_shrink"], r""" Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = F.tanhshrink(x) print(out) # [-0.020051, -0.00262468, 0.000332005, 0.00868739] """, ) add_sample_code( globals()["abs"], r""" Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.abs(x) print(out) # [0.4 0.2 0.1 0.3] """, ) add_sample_code( globals()["softplus"], r""" Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = F.softplus(x) print(out) # [0.513015, 0.598139, 0.744397, 0.854355] """, ) add_sample_code( globals()["softsign"], r""" Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = F.softsign(x) print(out) # [-0.285714, -0.166667, 0.0909091, 0.230769] """, ) def acos(x, name=None): """ Acos Activation Operator. .. math:: out = cos^{-1}(x) Args: x (Tensor): Input of Acos operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Acos operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.acos(x) print(out) # [1.98231317 1.77215425 1.47062891 1.26610367] """ if in_dygraph_mode(): return _C_ops.acos(x) if _in_legacy_dygraph(): return _legacy_C_ops.acos(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'acos') helper = LayerHelper('acos', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='acos', inputs={"X": x}, outputs={"Out": out}) return out def acosh(x, name=None): """ Acosh Activation Operator. .. math:: out = acosh(x) Args: x (Tensor): Input of Acosh operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Acosh operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([1., 3., 4., 5.]) out = paddle.acosh(x) print(out) # [0. , 1.76274729, 2.06343699, 2.29243159] """ if in_dygraph_mode(): return _C_ops.acosh(x) if _in_legacy_dygraph(): return _legacy_C_ops.acosh(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'acosh') helper = LayerHelper('acosh', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='acosh', inputs={"X": x}, outputs={"Out": out}) return out def asin(x, name=None): """ Arcsine Operator. .. math:: out = sin^{-1}(x) Args: x (Tensor): Input of Asin operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Same shape and dtype as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.asin(x) print(out) # [-0.41151685 -0.20135792 0.10016742 0.30469265] """ if in_dygraph_mode(): return _C_ops.asin(x) if _in_legacy_dygraph(): return _legacy_C_ops.asin(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'asin') helper = LayerHelper('asin', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='asin', inputs={"X": x}, outputs={"Out": out}) return out def asinh(x, name=None): """ Asinh Activation Operator. .. math:: out = asinh(x) Args: x (Tensor): Input of Asinh operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Asinh operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.asinh(x) print(out) # [-0.39003533, -0.19869010, 0.09983408, 0.29567307] """ if in_dygraph_mode(): return _C_ops.asinh(x) if _in_legacy_dygraph(): return _legacy_C_ops.asinh(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'asinh') helper = LayerHelper('asinh', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='asinh', inputs={"X": x}, outputs={"Out": out}) return out def atan(x, name=None): """ Arctangent Operator. .. math:: out = tan^{-1}(x) Args: x (Tensor): Input of Atan operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Same shape and dtype as input x. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.atan(x) print(out) # [-0.38050638 -0.19739556 0.09966865 0.29145679] """ if in_dygraph_mode(): return _C_ops.atan(x) if _in_legacy_dygraph(): return _legacy_C_ops.atan(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'atan') helper = LayerHelper('atan', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='atan', inputs={"X": x}, outputs={"Out": out}) return out def atanh(x, name=None): """ Atanh Activation Operator. .. math:: out = atanh(x) Args: x (Tensor): Input of Atan operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Atanh operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.atanh(x) print(out) # [-0.42364895, -0.20273256, 0.10033535, 0.30951962] """ if in_dygraph_mode(): return _C_ops.atanh(x) if _in_legacy_dygraph(): return _legacy_C_ops.atanh(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'atanh') helper = LayerHelper('atanh', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='atanh', inputs={"X": x}, outputs={"Out": out}) return out def ceil(x, name=None): """ Ceil Operator. Computes ceil of x element-wise. .. math:: out = \\left \\lceil x \\right \\rceil Args: x (Tensor): Input of Ceil operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Ceil operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.ceil(x) print(out) # [-0. -0. 1. 1.] """ if in_dygraph_mode(): return _C_ops.ceil(x) if _in_legacy_dygraph(): return _legacy_C_ops.ceil(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'ceil') helper = LayerHelper('ceil', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='ceil', inputs={"X": x}, outputs={"Out": out}) return out def cos(x, name=None): """ Cosine Operator. Computes cosine of x element-wise. Input range is `(-inf, inf)` and output range is `[-1,1]`. .. math:: out = cos(x) Args: x (Tensor): Input of Cos operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Cos operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.cos(x) print(out) # [0.92106099 0.98006658 0.99500417 0.95533649] """ if in_dygraph_mode(): return _C_ops.cos(x) if _in_legacy_dygraph(): return _legacy_C_ops.cos(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'cos') helper = LayerHelper('cos', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='cos', inputs={"X": x}, outputs={"Out": out}) return out def cosh(x, name=None): """ Cosh Activation Operator. Input range `(-inf, inf)`, output range `(1, inf)`. .. math:: out = \\frac{exp(x)+exp(-x)}{2} Args: x (Tensor): Input of Cosh operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Cosh operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.cosh(x) print(out) # [1.08107237 1.02006676 1.00500417 1.04533851] """ if in_dygraph_mode(): return _C_ops.cosh(x) if _in_legacy_dygraph(): return _legacy_C_ops.cosh(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'cosh') helper = LayerHelper('cosh', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='cosh', inputs={"X": x}, outputs={"Out": out}) return out def exp(x, name=None): """ Computes exp of x element-wise with a natural number `e` as the base. .. math:: out = e^x Args: x (Tensor): Input of Exp operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Exp operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.exp(x) print(out) # [0.67032005 0.81873075 1.10517092 1.34985881] """ if in_dygraph_mode(): return _C_ops.exp(x) if _in_legacy_dygraph(): return _legacy_C_ops.exp(x) check_variable_and_dtype( x, 'x', [ 'int32', 'int64', 'float16', 'float32', 'float64', 'complex64', 'complex128', ], 'exp', ) helper = LayerHelper('exp', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='exp', inputs={"X": x}, outputs={"Out": out}) return out def expm1(x, name=None): """ Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base. .. math:: out = e^x - 1 Args: x (Tensor): Input of Expm1 operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Expm1 operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.expm1(x) print(out) # [-0.32967997, -0.18126924, 0.10517092, 0.34985882] """ if in_dygraph_mode(): return _C_ops.expm1(x) if _in_legacy_dygraph(): return _legacy_C_ops.expm1(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'expm1') helper = LayerHelper('expm1', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='expm1', inputs={"X": x}, outputs={"Out": out}) return out def floor(x, name=None): """ Floor Activation Operator. Computes floor of x element-wise. .. math:: out = \\lfloor x \\rfloor Args: x (Tensor): Input of Floor operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Floor operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.floor(x) print(out) # [-1. -1. 0. 0.] """ if in_dygraph_mode(): return _C_ops.floor(x) if _in_legacy_dygraph(): return _legacy_C_ops.floor(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'floor') helper = LayerHelper('floor', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='floor', inputs={"X": x}, outputs={"Out": out}) return out def reciprocal(x, name=None): """ Reciprocal Activation Operator. .. math:: out = \\frac{1}{x} Args: x (Tensor): Input of Reciprocal operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Reciprocal operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.reciprocal(x) print(out) # [-2.5 -5. 10. 3.33333333] """ if in_dygraph_mode(): return _C_ops.reciprocal(x) if _in_legacy_dygraph(): return _legacy_C_ops.reciprocal(x) check_variable_and_dtype( x, 'x', ['float16', 'float32', 'float64'], 'reciprocal' ) helper = LayerHelper('reciprocal', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='reciprocal', inputs={"X": x}, outputs={"Out": out}) return out def round(x, name=None): """ Round the values in the input to the nearest integer value. .. code-block:: text input: x.shape = [4] x.data = [1.2, -0.9, 3.4, 0.9] output: out.shape = [4] out.data = [1., -1., 3., 1.] Args: x (Tensor): Input of Round operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Round operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.5, -0.2, 0.6, 1.5]) out = paddle.round(x) print(out) # [-1. -0. 1. 2.] """ if in_dygraph_mode(): return _C_ops.round(x) if _in_legacy_dygraph(): return _legacy_C_ops.round(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'round') helper = LayerHelper('round', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='round', inputs={"X": x}, outputs={"Out": out}) return out def rsqrt(x, name=None): """ Rsqrt Activation Operator. Please make sure input is legal in case of numeric errors. .. math:: out = \\frac{1}{\\sqrt{x}} Args: x (Tensor): Input of Rsqrt operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Rsqrt operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([0.1, 0.2, 0.3, 0.4]) out = paddle.rsqrt(x) print(out) # [3.16227766 2.23606798 1.82574186 1.58113883] """ if in_dygraph_mode(): return _C_ops.rsqrt(x) if _in_legacy_dygraph(): return _legacy_C_ops.rsqrt(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'rsqrt') helper = LayerHelper('rsqrt', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='rsqrt', inputs={"X": x}, outputs={"Out": out}) return out def sigmoid(x, name=None): """ Sigmoid Activation. .. math:: out = \\frac{1}{1 + e^{-x}} Args: x (Tensor): Input of Sigmoid operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Sigmoid operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = F.sigmoid(x) print(out) # [0.40131234 0.450166 0.52497919 0.57444252] """ if in_dygraph_mode(): return _C_ops.sigmoid(x) if _in_legacy_dygraph(): return _legacy_C_ops.sigmoid(x) check_variable_and_dtype( x, 'x', ['float16', 'float32', 'float64'], 'sigmoid' ) helper = LayerHelper('sigmoid', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='sigmoid', inputs={"X": x}, outputs={"Out": out}) return out def sin(x, name=None): """ Sine Activation Operator. .. math:: out = sin(x) Args: x (Tensor): Input of Sin operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Sin operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.sin(x) print(out) # [-0.38941834 -0.19866933 0.09983342 0.29552021] """ if in_dygraph_mode(): return _C_ops.sin(x) if _in_legacy_dygraph(): return _legacy_C_ops.sin(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sin') helper = LayerHelper('sin', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='sin', inputs={"X": x}, outputs={"Out": out}) return out def sinh(x, name=None): """ Sinh Activation Operator. .. math:: out = sinh(x) Args: x (Tensor): Input of Sinh operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Sinh operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.sinh(x) print(out) # [-0.41075233 -0.201336 0.10016675 0.30452029] """ if in_dygraph_mode(): return _C_ops.sinh(x) if _in_legacy_dygraph(): return _legacy_C_ops.sinh(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sinh') helper = LayerHelper('sinh', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='sinh', inputs={"X": x}, outputs={"Out": out}) return out def sqrt(x, name=None): """ Sqrt Activation Operator. .. math:: out=\\sqrt{x}=x^{1/2} Args: x (Tensor): Input of Sqrt operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Sqrt operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([0.1, 0.2, 0.3, 0.4]) out = paddle.sqrt(x) print(out) # [0.31622777 0.4472136 0.54772256 0.63245553] """ if in_dygraph_mode(): return _C_ops.sqrt(x) if _in_legacy_dygraph(): return _legacy_C_ops.sqrt(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sqrt') helper = LayerHelper('sqrt', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='sqrt', inputs={"X": x}, outputs={"Out": out}) return out def square(x, name=None): """ Square each elements of the inputs. .. math:: out = x^2 Args: x (Tensor): Input of Square operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Square operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.square(x) print(out) # [0.16 0.04 0.01 0.09] """ if in_dygraph_mode(): return _C_ops.square(x) if _in_legacy_dygraph(): return _legacy_C_ops.square(x) check_variable_and_dtype( x, 'x', [ 'int32', 'int64', 'float16', 'float32', 'float64', 'complex64', 'complex128', ], 'square', ) helper = LayerHelper('square', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='square', inputs={"X": x}, outputs={"Out": out}) return out def tan(x, name=None): """ Tangent Operator. Computes tangent of x element-wise. Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`. .. math:: out = tan(x) Args: x (Tensor): Input of Tan operator, an N-D Tensor, with data type float32, float64 or float16. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor. Output of Tan operator, a Tensor with shape same as input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.tan(x) print(out) # [-0.42279324, -0.20271005, 0.10033467, 0.30933627] """ if in_dygraph_mode(): return _C_ops.tan(x) if _in_legacy_dygraph(): return _legacy_C_ops.tan(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tan') helper = LayerHelper('tan', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='tan', inputs={"X": x}, outputs={"Out": out}) return out _erf_ = generate_layer_fn('erf') def erf(x, name=None): if in_dygraph_mode(): return _C_ops.erf(x) locals_var = locals().copy() kwargs = dict() for name, val in locals_var.items(): if val is not None: kwargs[name] = val return _erf_(**kwargs) erf.__doc__ = r""" :strong:`Erf Operator` For more details, see `Error function `_. Equation: .. math:: out = \frac{2}{\sqrt{\pi}} \int_{0}^{x}e^{- \eta^{2}}d\eta Args: x (Tensor): The input tensor, it's data type should be float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The output of Erf, dtype: float32 or float64, the same as the input, shape: the same as the input. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.erf(x) print(out) # [-0.42839236 -0.22270259 0.11246292 0.32862676] """