// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/kernels/shuffle_batch_kernel.h" namespace phi { template void ShuffleBatchGradKernel(const Context& dev_ctx, const DenseTensor& shuffleidx, const DenseTensor& out_grad, int startup_seed, DenseTensor* x_grad) { auto embed_size = out_grad.dims()[out_grad.dims().size() - 1]; auto elem_size = 1; for (auto i = 0; i < out_grad.dims().size() - 1; i++) elem_size *= static_cast(out_grad.dims()[i]); std::vector idx_vec_grad(elem_size); auto* shuffleidx_data = shuffleidx.data(); for (int i = 0; i < static_cast(idx_vec_grad.size()); i++) { idx_vec_grad[shuffleidx_data[i]] = i; } // copy data according to idx_vec_grad auto* out_grad_data = out_grad.data(); auto* x_grad_data = dev_ctx.template Alloc(x_grad); for (auto i = 0; i < elem_size; i++) { memcpy(x_grad_data + idx_vec_grad[i] * embed_size, out_grad_data + i * embed_size, embed_size * sizeof(T)); } } } // namespace phi PD_REGISTER_KERNEL(shuffle_batch_grad, CPU, ALL_LAYOUT, phi::ShuffleBatchGradKernel, float, double, int32_t, int64_t) {}