# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle import paddle.fluid as fluid import numpy as np from op_test import OpTest class TestIndexSampleOp(OpTest): def setUp(self): self.op_type = "index_sample" self.python_api = paddle.index_sample self.config() xnp = np.random.random(self.x_shape).astype(self.x_type) indexnp = np.random.randint( low=0, high=self.x_shape[1], size=self.index_shape).astype(self.index_type) self.inputs = {'X': xnp, 'Index': indexnp} index_array = [] for i in range(self.index_shape[0]): for j in indexnp[i]: index_array.append(xnp[i, j]) index_array = np.array(index_array).astype(self.x_type) out = np.reshape(index_array, self.index_shape) self.outputs = {'Out': out} def test_check_output(self): self.check_output(check_eager=False) def test_check_grad(self): self.check_grad(['X'], 'Out', check_eager=False) def config(self): """ For multi-dimension input """ self.x_shape = (10, 20) self.x_type = "float64" self.index_shape = (10, 10) self.index_type = "int32" class TestCase1(TestIndexSampleOp): def config(self): """ For one dimension input """ self.x_shape = (100, 1) self.x_type = "float64" self.index_shape = (100, 1) self.index_type = "int32" class TestCase2(TestIndexSampleOp): def config(self): """ For int64_t index type """ self.x_shape = (10, 100) self.x_type = "float64" self.index_shape = (10, 10) self.index_type = "int64" class TestCase3(TestIndexSampleOp): def config(self): """ For int index type """ self.x_shape = (10, 100) self.x_type = "float64" self.index_shape = (10, 10) self.index_type = "int32" class TestCase4(TestIndexSampleOp): def config(self): """ For int64 index type """ self.x_shape = (10, 128) self.x_type = "float64" self.index_shape = (10, 64) self.index_type = "int64" class TestIndexSampleShape(unittest.TestCase): def test_shape(self): paddle.enable_static() # create x value x_shape = (2, 5) x_type = "float64" x_np = np.random.random(x_shape).astype(x_type) # create index value index_shape = (2, 3) index_type = "int32" index_np = np.random.randint( low=0, high=x_shape[1], size=index_shape).astype(index_type) x = fluid.data(name='x', shape=[-1, 5], dtype='float64') index = fluid.data(name='index', shape=[-1, 3], dtype='int32') output = paddle.index_sample(x=x, index=index) place = fluid.CPUPlace() exe = fluid.Executor(place=place) exe.run(fluid.default_startup_program()) feed = {'x': x_np, 'index': index_np} res = exe.run(feed=feed, fetch_list=[output]) class TestIndexSampleDynamic(unittest.TestCase): def test_result(self): with fluid.dygraph.guard(): x = paddle.to_tensor( [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]], dtype='float32') index = paddle.to_tensor( [[0, 1, 2], [1, 2, 3], [0, 0, 0]], dtype='int32') out_z1 = paddle.index_sample(x, index) except_output = np.array( [[1.0, 2.0, 3.0], [6.0, 7.0, 8.0], [9.0, 9.0, 9.0]]) assert out_z1.numpy().all() == except_output.all() if __name__ == "__main__": paddle.enable_static() unittest.main()