# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * ################################### Data Configuration ################################### TrainData(SimpleData( files = "trainer/tests/sample_filelist.txt", feat_dim = 3, context_len = 0, buffer_capacity = 1000000)) ################################### Algorithm Configuration ################################### settings(batch_size = 1000, learning_method = MomentumOptimizer(momentum=0.5, sparse=False)) ################################### Network Configuration ################################### data = data_layer(name ="input", size=3) fc1 = fc_layer(input=data, size=800, bias_attr=True, act=SigmoidActivation()) fc2 = fc_layer(input=fc1, size=800, bias_attr=True, act=SigmoidActivation()) output = fc_layer(input=[fc1, fc2], size=10, bias_attr=True, act=SoftmaxActivation()) lbl = data_layer(name ="label", size=1) cost = classification_cost(input=output, label=lbl) outputs(cost)