import layers __all__ = ["simple_img_conv_pool", "sequence_conv_pool", "glu"] def simple_img_conv_pool(input, num_filters, filter_size, pool_size, pool_stride, act, param_attr=None, pool_type='max'): conv_out = layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, param_attr=param_attr, act=act) pool_out = layers.pool2d( input=conv_out, pool_size=pool_size, pool_type=pool_type, pool_stride=pool_stride) return pool_out def img_conv_group(input, conv_num_filter, pool_size, conv_padding=1, conv_filter_size=3, conv_act=None, param_attr=None, conv_with_batchnorm=False, conv_batchnorm_drop_rate=None, pool_stride=1, pool_type=None): """ Image Convolution Group, Used for vgg net. """ tmp = input assert isinstance(conv_num_filter, list) or \ isinstance(conv_num_filter, tuple) def __extend_list__(obj): if not hasattr(obj, '__len__'): return [obj] * len(conv_num_filter) else: return obj conv_padding = __extend_list__(conv_padding) conv_filter_size = __extend_list__(conv_filter_size) param_attr = __extend_list__(param_attr) conv_with_batchnorm = __extend_list__(conv_with_batchnorm) conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate) for i in xrange(len(conv_num_filter)): local_conv_act = conv_act if conv_with_batchnorm[i]: local_conv_act = None tmp = layers.conv2d( input=tmp, num_filters=conv_num_filter[i], filter_size=conv_filter_size[i], padding=conv_padding[i], param_attr=param_attr[i], act=local_conv_act) if conv_with_batchnorm[i]: tmp = layers.batch_norm(input=tmp, act=conv_act) drop_rate = conv_batchnorm_drop_rate[i] if abs(drop_rate) > 1e-5: tmp = layers.dropout(x=tmp, dropout_prob=drop_rate) pool_out = layers.pool2d( input=tmp, pool_size=pool_size, pool_type=pool_type, pool_stride=pool_stride) return pool_out def sequence_conv_pool(input, num_filters, filter_size, param_attr=None, act="sigmoid", pool_type="max"): conv_out = layers.sequence_conv( input=input, num_filters=num_filters, filter_size=filter_size, param_attr=param_attr, act=act) pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type) return pool_out def glu(input, dim=-1): """ The gated linear unit composed by split and elementwise multiplication. Specifically, Split the input into two equal sized parts :math:`a` and :math:`b` along the given dimension and then compute as following: .. math:: {GLU}(a, b)= a \otimes \sigma(b) Refer to `Language Modeling with Gated Convolutional Networks `_. Args: input (Variable): The input variable which is a Tensor or LoDTensor. dim (int): The dimension along which to split. If :math:`dim < 0`, the dimension to split along is :math:`rank(input) + dim`. Returns: Variable: The Tensor variable with half the size of input. Examples: .. code-block:: python # x is a Tensor variable with shape [3, 6, 9] fluid.nets.glu(input=x, dim=-1) # shape of output: [3, 3, 9] """ a, b = layers.split(input, num_or_sections=2, dim=dim) out = layers.elementwise_mul(x=a, y=b) return out