# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: from paddle.version import full_version as __version__ from paddle.version import commit as __git_commit__ from paddle.cuda_env import * # noqa: F403 except ImportError: import sys sys.stderr.write( '''Warning with import paddle: you should not import paddle from the source directory; please install paddlepaddle*.whl firstly.''' ) from .batch import batch # noqa: F401 # Do the *DUPLICATED* monkey-patch for the tensor object. # We need remove the duplicated code here once we fix # the illogical implement in the monkey-patch methods later. from .framework import monkey_patch_variable from .framework import monkey_patch_math_tensor monkey_patch_variable() monkey_patch_math_tensor() from .framework import disable_signal_handler # noqa: F401 from .framework import get_flags # noqa: F401 from .framework import set_flags # noqa: F401 from .framework import disable_static # noqa: F401 from .framework import enable_static # noqa: F401 from .framework import in_dynamic_mode # noqa: F401 from .fluid.dataset import * # noqa: F401, F403 from .fluid.lazy_init import LazyGuard # noqa: F401 from .framework.dtype import iinfo # noqa: F401 from .framework.dtype import finfo # noqa: F401 from .framework.dtype import dtype # noqa: F401 from .framework.dtype import uint8 # noqa: F401 from .framework.dtype import int8 # noqa: F401 from .framework.dtype import int16 # noqa: F401 from .framework.dtype import int32 # noqa: F401 from .framework.dtype import int64 # noqa: F401 from .framework.dtype import float16 # noqa: F401 from .framework.dtype import float32 # noqa: F401 from .framework.dtype import float64 # noqa: F401 from .framework.dtype import bfloat16 # noqa: F401 from .framework.dtype import bool # noqa: F401 from .framework.dtype import complex64 # noqa: F401 from .framework.dtype import complex128 # noqa: F401 Tensor = framework.core.eager.Tensor # noqa: F401 Tensor.__qualname__ = 'Tensor' # noqa: F401 import paddle.distributed # noqa: F401 import paddle.sysconfig # noqa: F401 import paddle.distribution # noqa: F401 import paddle.nn # noqa: F401 import paddle.distributed.fleet # noqa: F401 import paddle.optimizer # noqa: F401 import paddle.metric # noqa: F401 import paddle.regularizer # noqa: F401 import paddle.incubate # noqa: F401 import paddle.autograd # noqa: F401 import paddle.device # noqa: F401 import paddle.jit # noqa: F401 import paddle.amp # noqa: F401 import paddle.dataset # noqa: F401 import paddle.inference # noqa: F401 import paddle.io # noqa: F401 import paddle.onnx # noqa: F401 import paddle.reader # noqa: F401 import paddle.static # noqa: F401 import paddle.vision # noqa: F401 import paddle.audio # noqa: F401 import paddle.geometric # noqa: F401 import paddle.sparse # noqa: F401 import paddle.quantization # noqa: F401 from .tensor.attribute import is_complex # noqa: F401 from .tensor.attribute import is_integer # noqa: F401 from .tensor.attribute import rank # noqa: F401 from .tensor.attribute import shape # noqa: F401 from .tensor.attribute import real # noqa: F401 from .tensor.attribute import imag # noqa: F401 from .tensor.attribute import is_floating_point # noqa: F401 from .tensor.creation import create_parameter # noqa: F401 from .tensor.creation import to_tensor # noqa: F401 from .tensor.creation import diag # noqa: F401 from .tensor.creation import diagflat # noqa: F401 from .tensor.creation import eye # noqa: F401 from .tensor.creation import linspace # noqa: F401 from .tensor.creation import logspace # noqa: F401 from .tensor.creation import ones # noqa: F401 from .tensor.creation import ones_like # noqa: F401 from .tensor.creation import zeros # noqa: F401 from .tensor.creation import zeros_like # noqa: F401 from .tensor.creation import arange # noqa: F401 from .tensor.creation import full # noqa: F401 from .tensor.creation import full_like # noqa: F401 from .tensor.creation import triu # noqa: F401 from .tensor.creation import tril # noqa: F401 from .tensor.creation import meshgrid # noqa: F401 from .tensor.creation import empty # noqa: F401 from .tensor.creation import empty_like # noqa: F401 from .tensor.creation import assign # noqa: F401 from .tensor.creation import complex # noqa: F401 from .tensor.creation import clone # noqa: F401 from .tensor.creation import tril_indices # noqa: F401 from .tensor.creation import triu_indices # noqa: F401 from .tensor.creation import polar # noqa: F401 from .tensor.linalg import matmul # noqa: F401 from .tensor.linalg import dot # noqa: F401 from .tensor.linalg import norm # noqa: F401 from .tensor.linalg import transpose # noqa: F401 from .tensor.linalg import dist # noqa: F401 from .tensor.linalg import t # noqa: F401 from .tensor.linalg import cross # noqa: F401 from .tensor.linalg import cholesky # noqa: F401 from .tensor.linalg import bmm # noqa: F401 from .tensor.linalg import histogram # noqa: F401 from .tensor.linalg import bincount # noqa: F401 from .tensor.linalg import mv # noqa: F401 from .tensor.logic import equal # noqa: F401 from .tensor.linalg import eigvalsh # noqa: F401 from .tensor.logic import greater_equal # noqa: F401 from .tensor.logic import greater_than # noqa: F401 from .tensor.logic import is_empty # noqa: F401 from .tensor.logic import less_equal # noqa: F401 from .tensor.logic import less_than # noqa: F401 from .tensor.logic import logical_and # noqa: F401 from .tensor.logic import logical_not # noqa: F401 from .tensor.logic import logical_or # noqa: F401 from .tensor.logic import logical_xor # noqa: F401 from .tensor.logic import bitwise_and # noqa: F401 from .tensor.logic import bitwise_not # noqa: F401 from .tensor.logic import bitwise_or # noqa: F401 from .tensor.logic import bitwise_xor # noqa: F401 from .tensor.logic import not_equal # noqa: F401 from .tensor.logic import allclose # noqa: F401 from .tensor.logic import isclose # noqa: F401 from .tensor.logic import equal_all # noqa: F401 from .tensor.logic import is_tensor # noqa: F401 from .tensor.manipulation import cast # noqa: F401 from .tensor.manipulation import concat # noqa: F401 from .tensor.manipulation import broadcast_tensors # noqa: F401 from .tensor.manipulation import expand # noqa: F401 from .tensor.manipulation import broadcast_to # noqa: F401 from .tensor.manipulation import expand_as # noqa: F401 from .tensor.manipulation import tile # noqa: F401 from .tensor.manipulation import flatten # noqa: F401 from .tensor.manipulation import gather # noqa: F401 from .tensor.manipulation import gather_nd # noqa: F401 from .tensor.manipulation import reshape # noqa: F401 from .tensor.manipulation import reshape_ # noqa: F401 from .tensor.manipulation import flip as reverse # noqa: F401 from .tensor.manipulation import scatter # noqa: F401 from .tensor.manipulation import scatter_ # noqa: F401 from .tensor.manipulation import scatter_nd_add # noqa: F401 from .tensor.manipulation import scatter_nd # noqa: F401 from .tensor.manipulation import shard_index # noqa: F401 from .tensor.manipulation import slice # noqa: F401 from .tensor.manipulation import crop # noqa: F401 from .tensor.manipulation import split # noqa: F401 from .tensor.manipulation import vsplit # noqa: F401 from .tensor.manipulation import squeeze # noqa: F401 from .tensor.manipulation import squeeze_ # noqa: F401 from .tensor.manipulation import stack # noqa: F401 from .tensor.manipulation import strided_slice # noqa: F401 from .tensor.manipulation import unique # noqa: F401 from .tensor.manipulation import unique_consecutive # noqa: F401 from .tensor.manipulation import unsqueeze # noqa: F401 from .tensor.manipulation import unsqueeze_ # noqa: F401 from .tensor.manipulation import unstack # noqa: F401 from .tensor.manipulation import flip # noqa: F401 from .tensor.manipulation import rot90 # noqa: F401 from .tensor.manipulation import unbind # noqa: F401 from .tensor.manipulation import roll # noqa: F401 from .tensor.manipulation import chunk # noqa: F401 from .tensor.manipulation import tolist # noqa: F401 from .tensor.manipulation import take_along_axis # noqa: F401 from .tensor.manipulation import put_along_axis # noqa: F401 from .tensor.manipulation import tensordot # noqa: F401 from .tensor.manipulation import as_complex # noqa: F401 from .tensor.manipulation import as_real # noqa: F401 from .tensor.manipulation import moveaxis # noqa: F401 from .tensor.manipulation import repeat_interleave # noqa: F401 from .tensor.manipulation import index_add # noqa: F401 from .tensor.manipulation import index_add_ # noqa: F401 from .tensor.math import abs # noqa: F401 from .tensor.math import acos # noqa: F401 from .tensor.math import asin # noqa: F401 from .tensor.math import atan # noqa: F401 from .tensor.math import atan2 # noqa: F401 from .tensor.math import ceil # noqa: F401 from .tensor.math import cos # noqa: F401 from .tensor.math import tan # noqa: F401 from .tensor.math import cosh # noqa: F401 from .tensor.math import cumsum # noqa: F401 from .tensor.math import cumprod # noqa: F401 from .tensor.math import logcumsumexp # noqa: F401 from .tensor.math import logit # noqa: F401 from .tensor.math import exp # noqa: F401 from .tensor.math import expm1 # noqa: F401 from .tensor.math import floor # noqa: F401 from .tensor.math import increment # noqa: F401 from .tensor.math import log # noqa: F401 from .tensor.math import log2 # noqa: F401 from .tensor.math import log10 # noqa: F401 from .tensor.math import multiplex # noqa: F401 from .tensor.math import pow # noqa: F401 from .tensor.math import reciprocal # noqa: F401 from .tensor.math import all # noqa: F401 from .tensor.math import any # noqa: F401 from .tensor.math import round # noqa: F401 from .tensor.math import rsqrt # noqa: F401 from .tensor.math import scale # noqa: F401 from .tensor.math import sign # noqa: F401 from .tensor.math import sin # noqa: F401 from .tensor.math import sinh # noqa: F401 from .tensor.math import sqrt # noqa: F401 from .tensor.math import square # noqa: F401 from .tensor.math import stanh # noqa: F401 from .tensor.math import sum # noqa: F401 from .tensor.math import nan_to_num # noqa: F401 from .tensor.math import nansum # noqa: F401 from .tensor.math import nanmean # noqa: F401 from .tensor.math import count_nonzero # noqa: F401 from .tensor.math import tanh # noqa: F401 from .tensor.math import tanh_ # noqa: F401 from .tensor.math import add_n # noqa: F401 from .tensor.math import max # noqa: F401 from .tensor.math import maximum # noqa: F401 from .tensor.math import amax # noqa: F401 from .tensor.math import min # noqa: F401 from .tensor.math import minimum # noqa: F401 from .tensor.math import amin # noqa: F401 from .tensor.math import mm # noqa: F401 from .tensor.math import divide # noqa: F401 from .tensor.math import floor_divide # noqa: F401 from .tensor.math import remainder # noqa: F401 from .tensor.math import remainder_ # noqa: F401 from .tensor.math import mod # noqa: F401 from .tensor.math import floor_mod # noqa: F401 from .tensor.math import multiply # noqa: F401 from .tensor.math import renorm # noqa: F401 from .tensor.math import add # noqa: F401 from .tensor.math import subtract # noqa: F401 from .tensor.math import logsumexp # noqa: F401 from .tensor.math import inverse # noqa: F401 from .tensor.math import log1p # noqa: F401 from .tensor.math import erf # noqa: F401 from .tensor.math import addmm # noqa: F401 from .tensor.math import clip # noqa: F401 from .tensor.math import trace # noqa: F401 from .tensor.math import diagonal # noqa: F401 from .tensor.math import kron # noqa: F401 from .tensor.math import isfinite # noqa: F401 from .tensor.math import isinf # noqa: F401 from .tensor.math import isnan # noqa: F401 from .tensor.math import prod # noqa: F401 from .tensor.math import broadcast_shape # noqa: F401 from .tensor.math import conj # noqa: F401 from .tensor.math import trunc # noqa: F401 from .tensor.math import digamma # noqa: F401 from .tensor.math import neg # noqa: F401 from .tensor.math import lgamma # noqa: F401 from .tensor.math import acosh # noqa: F401 from .tensor.math import asinh # noqa: F401 from .tensor.math import atanh # noqa: F401 from .tensor.math import lerp # noqa: F401 from .tensor.math import erfinv # noqa: F401 from .tensor.math import rad2deg # noqa: F401 from .tensor.math import deg2rad # noqa: F401 from .tensor.math import gcd # noqa: F401 from .tensor.math import lcm # noqa: F401 from .tensor.math import diff # noqa: F401 from .tensor.math import angle # noqa: F401 from .tensor.math import fmax # noqa: F401 from .tensor.math import fmin # noqa: F401 from .tensor.math import inner # noqa: F401 from .tensor.math import outer # noqa: F401 from .tensor.math import heaviside # noqa: F401 from .tensor.math import frac # noqa: F401 from .tensor.math import sgn # noqa: F401 from .tensor.math import take # noqa: F401 from .tensor.math import frexp # noqa: F401 from .tensor.math import trapezoid # noqa: F401 from .tensor.math import cumulative_trapezoid # noqa: F401 from .tensor.math import vander # noqa: F401 from .tensor.random import bernoulli # noqa: F401 from .tensor.random import poisson # noqa: F401 from .tensor.random import multinomial # noqa: F401 from .tensor.random import standard_normal # noqa: F401 from .tensor.random import normal # noqa: F401 from .tensor.random import uniform # noqa: F401 from .tensor.random import randn # noqa: F401 from .tensor.random import rand # noqa: F401 from .tensor.random import randint # noqa: F401 from .tensor.random import randint_like # noqa: F401 from .tensor.random import randperm # noqa: F401 from .tensor.search import argmax # noqa: F401 from .tensor.search import argmin # noqa: F401 from .tensor.search import argsort # noqa: F401 from .tensor.search import searchsorted # noqa: F401 from .tensor.search import bucketize # noqa: F401 from .tensor.search import masked_select # noqa: F401 from .tensor.search import topk # noqa: F401 from .tensor.search import where # noqa: F401 from .tensor.search import index_select # noqa: F401 from .tensor.search import nonzero # noqa: F401 from .tensor.search import sort # noqa: F401 from .tensor.search import kthvalue # noqa: F401 from .tensor.search import mode # noqa: F401 from .tensor.to_string import set_printoptions # noqa: F401 from .tensor.einsum import einsum # noqa: F401 from .framework.random import seed # noqa: F401 from .framework.random import get_cuda_rng_state # noqa: F401 from .framework.random import set_cuda_rng_state # noqa: F401 from .framework.random import get_rng_state # noqa: F401 from .framework.random import set_rng_state # noqa: F401 from .framework import ParamAttr # noqa: F401 from .framework import CPUPlace # noqa: F401 from .framework import IPUPlace # noqa: F401 from .framework import CUDAPlace # noqa: F401 from .framework import CUDAPinnedPlace # noqa: F401 from .framework import CustomPlace # noqa: F401 from .autograd import grad # noqa: F401 from .autograd import no_grad # noqa: F401 from .autograd import enable_grad # noqa:F401 from .autograd import set_grad_enabled # noqa: F401 from .autograd import is_grad_enabled # noqa: F401 from .framework import save # noqa: F401 from .framework import load # noqa: F401 from .distributed import DataParallel # noqa: F401 from .framework import set_default_dtype # noqa: F401 from .framework import get_default_dtype # noqa: F401 from .tensor.search import index_sample # noqa: F401 from .tensor.stat import mean # noqa: F401 from .tensor.stat import std # noqa: F401 from .tensor.stat import var # noqa: F401 from .tensor.stat import numel # noqa: F401 from .tensor.stat import median # noqa: F401 from .tensor.stat import nanmedian # noqa: F401 from .tensor.stat import quantile # noqa: F401 from .tensor.stat import nanquantile # noqa: F401 from .device import get_cudnn_version # noqa: F401 from .device import set_device # noqa: F401 from .device import get_device # noqa: F401 from .device import is_compiled_with_xpu # noqa: F401 from .device import is_compiled_with_ipu # noqa: F401 from .device import is_compiled_with_cinn # noqa: F401 from .device import is_compiled_with_cuda # noqa: F401 from .device import is_compiled_with_rocm # noqa: F401 from .device import is_compiled_with_custom_device # noqa: F401 from .device import XPUPlace # noqa: F401 # high-level api from .hapi import Model # noqa: F401 from . import callbacks # noqa: F401 from .hapi import summary # noqa: F401 from .hapi import flops # noqa: F401 from . import hub # noqa: F401 from . import linalg # noqa: F401 from . import fft # noqa: F401 from . import signal # noqa: F401 import paddle.text # noqa: F401 import paddle.vision # noqa: F401 from .tensor.random import check_shape # noqa: F401 # CINN has to set a flag to include a lib if is_compiled_with_cinn(): import os package_dir = os.path.dirname(os.path.abspath(__file__)) runtime_include_dir = os.path.join(package_dir, "libs") cuh_file = os.path.join(runtime_include_dir, "cinn_cuda_runtime_source.cuh") if os.path.exists(cuh_file): os.environ.setdefault('runtime_include_dir', runtime_include_dir) disable_static() __all__ = [ # noqa 'iinfo', 'finfo', 'dtype', 'uint8', 'int8', 'int16', 'int32', 'int64', 'float16', 'float32', 'float64', 'bfloat16', 'bool', 'complex64', 'complex128', 'addmm', 'allclose', 'isclose', 't', 'add', 'subtract', 'diag', 'diagflat', 'isnan', 'scatter_nd_add', 'unstack', 'get_default_dtype', 'save', 'multinomial', 'get_cuda_rng_state', 'get_rng_state', 'rank', 'empty_like', 'eye', 'cumsum', 'cumprod', 'logcumsumexp', 'logit', 'LazyGuard', 'sign', 'is_empty', 'equal', 'equal_all', 'is_tensor', 'is_complex', 'is_integer', 'cross', 'where', 'log1p', 'cos', 'tan', 'mean', 'mode', 'mv', 'in_dynamic_mode', 'min', 'amin', 'any', 'slice', 'normal', 'logsumexp', 'full', 'unsqueeze', 'unsqueeze_', 'argmax', 'Model', 'summary', 'flops', 'sort', 'searchsorted', 'bucketize', 'split', 'vsplit', 'logical_and', 'full_like', 'less_than', 'kron', 'clip', 'Tensor', 'crop', 'ParamAttr', 'stanh', 'randint', 'randint_like', 'assign', 'gather', 'scale', 'zeros', 'rsqrt', 'squeeze', 'squeeze_', 'to_tensor', 'gather_nd', 'isinf', 'uniform', 'floor_divide', 'remainder', 'floor_mod', 'roll', 'batch', 'max', 'amax', 'logical_or', 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'bitwise_not', 'mm', 'flip', 'rot90', 'bincount', 'histogram', 'multiplex', 'CUDAPlace', 'empty', 'shape', 'real', 'imag', 'is_floating_point', 'complex', 'reciprocal', 'rand', 'less_equal', 'triu', 'sin', 'dist', 'unbind', 'meshgrid', 'arange', 'load', 'numel', 'median', 'nanmedian', 'quantile', 'nanquantile', 'no_grad', 'enable_grad', 'set_grad_enabled', 'is_grad_enabled', 'mod', 'abs', 'tril', 'pow', 'zeros_like', 'maximum', 'topk', 'index_select', 'CPUPlace', 'matmul', 'seed', 'acos', 'logical_xor', 'exp', 'expm1', 'bernoulli', 'poisson', 'sinh', 'round', 'DataParallel', 'argmin', 'prod', 'broadcast_shape', 'conj', 'neg', 'lgamma', 'lerp', 'erfinv', 'inner', 'outer', 'square', 'divide', 'ceil', 'atan', 'atan2', 'rad2deg', 'deg2rad', 'gcd', 'lcm', 'expand', 'broadcast_to', 'ones_like', 'index_sample', 'cast', 'grad', 'all', 'ones', 'not_equal', 'sum', 'nansum', 'nanmean', 'count_nonzero', 'tile', 'greater_equal', 'isfinite', 'create_parameter', 'dot', 'increment', 'erf', 'bmm', 'chunk', 'tolist', 'tensordot', 'greater_than', 'shard_index', 'argsort', 'tanh', 'tanh_', 'transpose', 'randn', 'strided_slice', 'unique', 'unique_consecutive', 'set_cuda_rng_state', 'set_rng_state', 'set_printoptions', 'std', 'flatten', 'asin', 'multiply', 'disable_static', 'masked_select', 'var', 'trace', 'enable_static', 'scatter_nd', 'set_default_dtype', 'disable_signal_handler', 'expand_as', 'stack', 'sqrt', 'randperm', 'linspace', 'logspace', 'reshape', 'reshape_', 'reverse', 'nonzero', 'CUDAPinnedPlace', 'logical_not', 'add_n', 'minimum', 'scatter', 'scatter_', 'floor', 'cosh', 'log', 'log2', 'log10', 'concat', 'check_shape', 'trunc', 'frac', 'digamma', 'standard_normal', 'diagonal', 'broadcast_tensors', 'einsum', 'set_flags', 'get_flags', 'asinh', 'acosh', 'atanh', 'as_complex', 'as_real', 'diff', 'angle', 'fmax', 'fmin', 'moveaxis', 'repeat_interleave', 'clone', 'kthvalue', 'renorm', 'take_along_axis', 'put_along_axis', 'nan_to_num', 'heaviside', 'tril_indices', 'index_add', "index_add_", 'sgn', 'triu_indices', 'take', 'frexp', 'trapezoid', 'cumulative_trapezoid', 'polar', 'vander', ]