// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/pten/kernels/dot_kernel.h" #include "paddle/pten/backends/gpu/gpu_context.h" #include "paddle/pten/core/kernel_registry.h" #include "paddle/pten/kernels/funcs/eigen/common.h" // See Note [ Why still include the fluid headers? ] #include "paddle/fluid/operators/eigen/eigen_function.h" #include "paddle/fluid/platform/complex.h" namespace pten { template void DotKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out) { out->mutable_data(); if (1 == out->dims().size()) { auto eigen_out = pten::EigenScalar::From(*out); auto eigen_x = pten::EigenVector::Flatten(x); auto eigen_y = pten::EigenVector::Flatten(y); auto& dev = *dev_ctx.eigen_device(); eigen_out.device(dev) = (eigen_x * eigen_y).sum(); } else { auto eigen_out = pten::EigenMatrix::From(*out); auto eigen_x = pten::EigenMatrix::From(x); auto eigen_y = pten::EigenMatrix::From(y); auto& dev = *dev_ctx.eigen_device(); eigen_out.device(dev) = (eigen_x * eigen_y).sum(Eigen::DSizes(1)); } } } // namespace pten using complex64 = ::paddle::platform::complex; using complex128 = ::paddle::platform::complex; PT_REGISTER_KERNEL(dot, GPU, ALL_LAYOUT, pten::DotKernel, float, double, int, int64_t, complex64, complex128) {}