# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle paddle.enable_static() from get_test_cover_info import ( XPUOpTestWrapper, create_test_class, get_xpu_op_support_types, ) from test_conv2d_op_xpu import XPUTestConv2DOp, XPUTestConv2DOp_v2 class XPUTestDepthwiseConv2DOp(XPUOpTestWrapper): def __init__(self): self.op_name = 'depthwise_conv2d' self.use_dynamic_create_class = False class TestDepthwiseConv(XPUTestConv2DOp.TestConv2DOp): def init_test_case(self): self.use_cuda = False self.pad = [1, 1] self.stride = [2, 2] self.input_size = [2, 12, 5, 5] # NCHW self.groups = 12 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [12, f_c, 3, 3] self.op_type = "depthwise_conv2d" class TestDepthwiseConv2(XPUTestConv2DOp.TestConv2DOp): def init_test_case(self): self.use_cuda = False self.pad = [1, 1] self.stride = [1, 1] self.input_size = [2, 12, 5, 5] # NCHW self.groups = 12 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [12, f_c, 3, 3] self.op_type = "depthwise_conv2d" class TestDepthwiseConv3(XPUTestConv2DOp.TestConv2DOp): def init_test_case(self): self.use_cuda = False self.pad = [1, 1] self.stride = [1, 1] self.input_size = [2, 24, 5, 5] # NCHW self.groups = 24 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [24, f_c, 3, 3] self.op_type = "depthwise_conv2d" class TestDepthwiseConvWithDilation(XPUTestConv2DOp.TestConv2DOp): def init_test_case(self): self.use_cuda = False self.pad = [1, 1] self.stride = [2, 2] self.input_size = [2, 24, 5, 5] # NCHW self.groups = 24 self.dilations = [2, 2] assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [24, f_c, 3, 3] self.op_type = "depthwise_conv2d" class TestDepthwiseConvWithDilation2(XPUTestConv2DOp.TestConv2DOp): def init_test_case(self): self.use_cuda = False self.pad = [1, 1] self.stride = [1, 1] self.input_size = [2, 24, 5, 5] # NCHW self.groups = 24 self.dilations = [2, 2] assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [24, f_c, 3, 3] self.op_type = "depthwise_conv2d" class XPUTestDepthwiseConv2DOp_v2(XPUOpTestWrapper): def __init__(self): self.op_name = 'depthwise_conv2d' self.use_dynamic_create_class = False class TestDepthwiseConv_AsyPadding(XPUTestConv2DOp_v2.TestConv2DOp_v2): def init_test_case(self): self.use_cuda = False self.stride = [2, 2] self.input_size = [2, 12, 5, 5] # NCHW self.groups = 12 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [12, f_c, 3, 3] self.op_type = "depthwise_conv2d" def init_paddings(self): self.pad = [1, 1, 0, 1] self.padding_algorithm = "EXPLICIT" class TestDepthwiseConv2_AsyPadding(XPUTestConv2DOp_v2.TestConv2DOp_v2): def init_test_case(self): self.use_cuda = False self.stride = [1, 1] self.input_size = [2, 12, 5, 5] # NCHW self.groups = 12 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [12, f_c, 3, 3] self.op_type = "depthwise_conv2d" def init_paddings(self): self.pad = [0, 1, 0, 2] self.padding_algorithm = "EXPLICIT" class TestDepthwiseConv3_AsyPadding(XPUTestConv2DOp_v2.TestConv2DOp_v2): def init_test_case(self): self.use_cuda = False self.stride = [1, 1] self.input_size = [2, 24, 5, 5] # NCHW self.groups = 24 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [24, f_c, 3, 3] self.op_type = "depthwise_conv2d" def init_paddings(self): self.pad = [1, 1, 0, 0] self.padding_algorithm = "EXPLICIT" class TestDepthwiseConvWithDilation_AsyPadding( XPUTestConv2DOp_v2.TestConv2DOp_v2 ): def init_test_case(self): self.use_cuda = False self.pad = [1, 1] self.stride = [2, 2] self.input_size = [2, 24, 5, 5] # NCHW self.groups = 24 self.dilations = [2, 2] assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [24, f_c, 3, 3] self.op_type = "depthwise_conv2d" def init_paddings(self): self.pad = [1, 1, 2, 1] self.padding_algorithm = "EXPLICIT" class TestDepthwiseConvWithDilation2_AsyPadding( XPUTestConv2DOp_v2.TestConv2DOp_v2 ): def init_test_case(self): self.use_cuda = True self.pad = [1, 1] self.stride = [1, 1] self.input_size = [2, 24, 5, 5] # NCHW self.groups = 24 self.dilations = [2, 2] assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [24, f_c, 3, 3] self.op_type = "depthwise_conv2d" def init_paddings(self): self.pad = [0, 1, 1, 0] self.padding_algorithm = "EXPLICIT" support_types = get_xpu_op_support_types('depthwise_conv2d') for stype in support_types: create_test_class(globals(), XPUTestDepthwiseConv2DOp, stype) create_test_class(globals(), XPUTestDepthwiseConv2DOp_v2, stype) # depthwise conv2d # create_test_padding_SAME_class(TestDepthwiseConv_AsyPadding) # create_test_padding_SAME_class(TestDepthwiseConvWithDilation_AsyPadding) # create_test_padding_SAME_class(TestDepthwiseConvandFuse_AsyPadding) # create_test_padding_SAME_class(TestDepthwiseConvWithDilationandFuse_AsyPadding) # create_test_padding_VALID_class(TestDepthwiseConv_AsyPadding) # create_test_padding_VALID_class(TestDepthwiseConvWithDilation_AsyPadding) # create_test_padding_VALID_class(TestDepthwiseConvandFuse_AsyPadding) # create_test_padding_VALID_class(TestDepthwiseConvWithDilationandFuse_AsyPadding) # channel last # create_test_channel_last_class(TestDepthwiseConv_AsyPadding) # create_test_channel_last_class(TestDepthwiseConvWithDilation2_AsyPadding) # create_test_channel_last_class(TestDepthwiseConvandFuse_AsyPadding) # create_test_channel_last_class(TestDepthwiseConvWithDilationandFuse_AsyPadding) if __name__ == '__main__': unittest.main()