# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import operator import functools import json import paddle from collections import deque from .graph import Node from .graph import Edge from .graph import Graph from .cluster import DeviceType from .process_group import get_process_group def is_collective_comm_op(op): comm_list = [ "c_allreduce_sum", "c_allreduce_min", "c_allreduce_max", "c_allreduce_prod", "c_reduce_sum", "c_reduce_min", "c_reduce_max", "c_reduce_prod", "c_broadcast", "c_allgather" ] if op.type in comm_list: return True else: return False def is_p2p_comm_op(op): comm_list = ["send_v2", "recv_v2"] if op.type in comm_list: return True else: return False def get_dtype_bytes(dtype): num_bytes = 0 if dtype == paddle.float64: num_bytes = 8 elif dtype == paddle.float32: num_bytes = 4 elif dtype == paddle.float16: num_bytes = 2 elif dtype == paddle.bfloat16: num_bytes = 2 elif dtype == paddle.int64: num_bytes = 8 elif dtype == paddle.int32: num_bytes = 4 elif dtype == paddle.int16: num_bytes = 2 elif dtype == paddle.int8: num_bytes = 1 elif dtype == paddle.uint8: num_bytes = 1 else: raise ValueError("Unrecognized dtype {}.".format(dtype)) return num_bytes def get_comm_volume(comm_op, src_rank, tgt_rank): comm_volume = None if src_rank == tgt_rank: return comm_volume comm_op_type = comm_op.type if comm_op_type != "recv_v2": tensor_name = comm_op.input_arg_names[0] else: tensor_name = comm_op.output_arg_names[0] tensor = comm_op.block._find_var_recursive(tensor_name) assert tensor is not None tensor_shape = tensor.shape # Skip the batch dim new_tensor_shape = [] for val in tensor_shape: if val == -1: print("Warning: -1 in the tensor shape.") new_tensor_shape.append(1) else: new_tensor_shape.append(val) tensor_size = functools.reduce(operator.mul, new_tensor_shape, 1) tensor_bytes = tensor_size * get_dtype_bytes(tensor.dtype) if "c_allreduce" in comm_op_type: comm_volume = 2 * tensor_bytes elif "c_allgather" in comm_op_type: comm_volume = tensor_bytes elif "c_broadcast" in comm_op_type: if comm_op.attr("root") == src_rank: comm_volume = tensor_bytes else: comm_volume = None elif "c_reduce" in comm_op_type: if comm_op.attr("root_id") == src_rank: comm_volume = None else: comm_volume = tensor_bytes elif "send_v2" in comm_op_type: if comm_op.attr("peer") == tgt_rank: comm_volume = tensor_bytes else: comm_volume = None elif "recv_v2" in comm_op_type: comm_volume = None else: raise ValueError("Unrecognized communication operator.") return comm_volume def analyze_comm_requirements_from_op(op, rank): comm_requirements_to_ranks = {} if is_collective_comm_op(op): process_group_id = op.attr("ring_id") process_group = get_process_group(process_group_id) if rank not in process_group.ranks: return comm_requirements_to_ranks for tgt_rank in process_group.ranks: comm_volume = get_comm_volume(op, rank, tgt_rank) if comm_volume is not None: comm_requirements_to_ranks[tgt_rank] = {} comm_requirements_to_ranks[tgt_rank][ "comm_volume"] = comm_volume elif is_p2p_comm_op(op): tgt_rank = op.attr("peer") comm_volume = get_comm_volume(op, rank, tgt_rank) if comm_volume is not None: comm_requirements_to_ranks[tgt_rank] = {} comm_requirements_to_ranks[tgt_rank]["comm_volume"] = comm_volume else: comm_requirements_to_ranks = {} return comm_requirements_to_ranks def analyze_requirements_for_program(program, rank): resource_requirements = {} comm_requirements_to_ranks = {} # only support device_type and only support GPU for now resource_requirements["device_type"] = DeviceType.GPU for block in program.blocks: for op in block.ops: cur_comm_requirements_to_ranks = analyze_comm_requirements_from_op( op, rank) for tgt_rank, link_info in cur_comm_requirements_to_ranks.items(): if tgt_rank in comm_requirements_to_ranks: comm_requirements_to_ranks[tgt_rank][ "comm_volume"] += link_info["comm_volume"] else: comm_requirements_to_ranks[tgt_rank] = {} comm_requirements_to_ranks[tgt_rank][ "comm_volume"] = link_info["comm_volume"] return resource_requirements, comm_requirements_to_ranks def build_process_graph(distributed_program): graph = Graph() for src_rank, src_program in distributed_program.items(): resource_requirements, comm_requirements_to_ranks = analyze_requirements_for_program( src_program, src_rank) graph.add_node(src_rank, resource_requirements=resource_requirements) for tgt_rank, comm_requirements in comm_requirements_to_ranks.items(): graph.add_edge( src_rank, tgt_rank, comm_requirements=comm_requirements) return graph def build_cluster_graph(cluster): graph = Graph() for machine in cluster.machines.values(): for device in machine.devices.values(): graph.add_node(device.global_id, device=device) for link in machine.links.values(): graph.add_edge( link.source.global_id, link.target.global_id, link=link) return graph def mapping(distributed_program, cluster): # A very simple mapping algorithm only for GPUs. # Here we assume one process will be mapped to one GPU. # In the future, more mapping configurations and algorithms will be supported. process_graph = build_process_graph(distributed_program) cluster_graph = build_cluster_graph(cluster) for cur_rank_node in process_graph: cur_rank_node["visited"] = False for cur_device_node in cluster_graph: cur_device_node["occupied"] = False def sort_by_comm_volume(rank_edge): return rank_edge["comm_requirements"]["comm_volume"] def sort_by_comm_bandwidth(device_edge): return device_edge["link"].bandwidth def select_unvisited_rank_node(rank_node_list): selected_rank_node = None for rank_node in rank_node_list: if rank_node["visited"] is False: selected_rank_node = rank_node return selected_rank_node queue = deque() root_rank_node = select_unvisited_rank_node( list(process_graph.nodes.values())) while root_rank_node is not None: queue.append(root_rank_node) while queue: cur_rank_node = queue.popleft() if cur_rank_node["visited"]: continue device_type = cur_rank_node["resource_requirements"]["device_type"] cur_device_node = None for device_node in cluster_graph.nodes.values(): if (device_node["device"].type == device_type) and ( not device_node["occupied"]): device_node["occupied"] = True cur_rank_node["visited"] = True cur_rank_node["device"] = device_node["device"] cur_device_node = device_node break assert cur_device_node, "Cannot find a device to satisfy the requirement." nbr_rank_edges = [] for nbr_rank_node_id, nbr_rank_edge in process_graph.adjs[ cur_rank_node.id].items(): assert nbr_rank_edge.src_id == cur_rank_node.id and nbr_rank_edge.tgt_id == nbr_rank_node_id queue.append(process_graph.nodes[nbr_rank_node_id]) nbr_rank_edges.append(nbr_rank_edge) nbr_rank_edges.sort(key=sort_by_comm_volume) nbr_device_edges = [] for nbr_device_edge in cluster_graph.adjs[ cur_device_node.id].values(): nbr_device_edges.append(nbr_device_edge) nbr_device_edges.sort(key=sort_by_comm_bandwidth) for nbr_rank_edge in nbr_rank_edges: src_rank_node = process_graph.nodes[nbr_rank_edge.src_id][ "visited"] if src_rank_node: continue device_type = src_rank_node["resource_requirements"][ "device_type"] nbr_rank_node = process_graph.nodes[nbr_rank_edge.tgt_id] for nbr_device_edge in nbr_device_edges: nbr_device_node = cluster_graph.nodes[ nbr_device_edge.tgt_id] if (nbr_device_node["device"].type == device_type) and ( not nbr_device_node["occupied"]): nbr_device_node["occupied"] = True nbr_rank_node["visited"] = True nbr_rank_node["device"] = nbr_device_node["device"] break root_rank_node = select_unvisited_rank_node( list(process_graph.nodes.values())) rank_mapping = {} for rank, rank_node in process_graph.nodes.items(): device = rank_node["device"] machine = device.machine if machine.id in rank_mapping: rank_mapping[machine.id]["hostname"] = machine.hostname rank_mapping[machine.id]["addr"] = machine.addr rank_mapping[machine.id]["port"] = machine.port if rank not in rank_mapping[machine.id]["ranks"]: rank_mapping[machine.id]["ranks"][rank] = [] rank_mapping[machine.id]["ranks"][rank].append(device.local_id) else: rank_mapping[machine.id]["ranks"][rank].append(device.local_id) else: rank_mapping[machine.id] = {} rank_mapping[machine.id]["hostname"] = machine.hostname rank_mapping[machine.id]["addr"] = machine.addr rank_mapping[machine.id]["port"] = machine.port rank_mapping[machine.id]["ranks"] = {} rank_mapping[machine.id]["ranks"][rank] = [] rank_mapping[machine.id]["ranks"][rank].append(device.local_id) for machine_mapping in rank_mapping.values(): for rank_devices in machine_mapping["ranks"].values(): rank_devices.sort() return rank_mapping