/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "BufferArg.h" #include "paddle/math/SparseMatrix.h" namespace paddle { const SequenceArg& BufferArg::sequence() const { CHECK_EQ(bufferType_, TENSOR_SEQUENCE_DATA); return dynamic_cast(*this); } const SparseMatrixArg& BufferArg::sparse() const { CHECK_EQ(bufferType_, TENSOR_SPARSE); return dynamic_cast(*this); } SparseMatrixArg::SparseMatrixArg(const CpuSparseMatrix& sparse, ArgType argType) : BufferArg(sparse, argType), row_(reinterpret_cast(sparse.getRows()), VALUE_TYPE_INT32), col_(reinterpret_cast(sparse.getCols()), VALUE_TYPE_INT32), nnz_(sparse.getElementCnt()), format_(static_cast(sparse.getFormat())), type_(static_cast(sparse.getValueType())) { bufferType_ = TENSOR_SPARSE; } SparseMatrixArg::SparseMatrixArg(const GpuSparseMatrix& sparse, ArgType argType) : BufferArg(sparse, argType), row_(reinterpret_cast(sparse.getRows()), VALUE_TYPE_INT32), col_(reinterpret_cast(sparse.getCols()), VALUE_TYPE_INT32), nnz_(sparse.getElementCnt()), format_(static_cast(sparse.getFormat())), type_(static_cast(sparse.getValueType())) { bufferType_ = TENSOR_SPARSE; } } // namespace paddle