# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.fluid as fluid import paddle import paddle.dataset.mnist as mnist class TestMultipleReader(unittest.TestCase): def setUp(self): self.batch_size = 64 self.pass_num = 3 # Convert mnist to recordio file with fluid.program_guard(fluid.Program(), fluid.Program()): data_file = paddle.batch(mnist.train(), batch_size=self.batch_size) feeder = fluid.DataFeeder( feed_list=[ fluid.layers.data( name='image', shape=[784]), fluid.layers.data( name='label', shape=[1], dtype='int64'), ], place=fluid.CPUPlace()) self.num_batch = fluid.recordio_writer.convert_reader_to_recordio_file( './mnist.recordio', data_file, feeder) def test_main(self): with fluid.program_guard(fluid.Program(), fluid.Program()): data_file = fluid.layers.open_recordio_file( filename='./mnist.recordio', shapes=[(-1, 784), (-1, 1)], lod_levels=[0, 0], dtypes=['float32', 'int64']) data_file = fluid.layers.io.multi_pass( reader=data_file, pass_num=self.pass_num) img, label = fluid.layers.read_file(data_file) if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) else: place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) batch_count = 0 while True: try: img_val, = exe.run(fetch_list=[img]) except fluid.core.EnforceNotMet as ex: self.assertIn("There is no next data.", ex.message) break batch_count += 1 self.assertLessEqual(img_val.shape[0], self.batch_size) data_file.reset() self.assertEqual(batch_count, self.num_batch * self.pass_num)