# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import os from typing import Tuple import pandas as pd class History_recorder: # NOTE increase extenable ablitity def __init__(self) -> None: self.history = [] self.store_path = None def add_cfg(self, **kwargs): cur_configs = {} for key, val in kwargs.items(): cur_configs[key] = val self.history.append(cur_configs) def sort_metric(self, direction, metric_name) -> None: if direction == 'Maximize': self.history.sort( key=lambda x: x[metric_name] if x[metric_name] is not None else float('-inf'), reverse=True, ) else: self.history.sort( key=lambda x: x[metric_name] if x[metric_name] is not None else float('inf'), reverse=False, ) return def get_best(self, metric, direction) -> Tuple[dict, bool]: self.sort_metric(direction=direction, metric_name=metric) if len(self.history) == 0: return (self.history[0], True) return (self.history[0], False) def store_history(self, path="./history.csv"): """Store history to csv file.""" self.store_path = path # convert to pd dataframe df = pd.DataFrame(self.history) # move 'job_id' to the first column cols = df.columns.tolist() cols.insert(0, cols.pop(cols.index('job_id'))) df = df.reindex(columns=cols) df = df.drop(columns=['time']) # write to csv df.to_csv(self.store_path, index=False) def load_history(self, path="./history.csv") -> Tuple[list, bool]: """Load history from csv file.""" err = False if self.store_path is None: self.store_path = path if not os.path.exists(self.store_path): err = True else: with open(self.store_path, "r") as f: reader = csv.reader(f) self.history = list(reader) return (self.history, err)